当前位置: 首页 > 医学版 > 医学理论 > 基础医学 > 医用化学
编号:94827
第二章 电解质溶液
http://www.100md.com 《医用化学》

第二章 电解质溶液

电解质分为强电解质和弱电解质.强电解质在水溶液中全部离解或近乎全部离解.而弱电解质在水溶液中只有一小部分离解。这两类电解质溶液的性质有较大差别。

电解质在水溶液中离解出来的离子全部都是水化的,但由于参加水化的水分子数目并不固定,所以在书写时仍以简单离子的符号表示,如H+、Na+、OH-离子等。

电解质在化学和生产上经常遇到,与人体亦关系密切,它常以一定浓度的离子形式广泛存在于人的体液和组织液中,其含量关系到人体的生理工能。因此,研究电解质溶液的有关性质,对医科学生来说很有必要。

第一节 电解质在溶液中的离解

一、一元弱酸弱碱的离解平衡

(一)离解度和离解常数

一元弱酸弱碱(如HOAc,NH3等)是弱电解质,在溶液中只能部分离解。离解程度用离解度表示。

离解度是指溶液中已经离解的电解质的分子数占电解质总分子数(已离解的和未离解的)的百分数。通常用α表示。

一元弱酸HA存在以下的离解平衡:

平衡浓度为

c(1-α) cα cα其中c为HA的总浓度,α为离解度。

离解常数KI可表示为

  (2-1)

KI在一定温度下为一常数,不能随浓度变化而变化。弱酸的离解常数习惯上用Ka表示,弱碱的离解常数用Kb表示。

如果弱电解质离解度α很少,则 

1-α≈1

这时式(2-1)为

  (2-2)

从式(2-2)可以看出,在一定温度下,同一弱电解质的离解度大约与溶液浓度的平方根成反比,即离解度随溶液的稀释而升高。这条说明溶液浓度与离解度关系的定律,叫做稀释定律。式(2-2)叫做稀释定律公式。利用此公式可以进行有关离解 试或离解常数的计算。

例1 在25℃时,已知(1)0.1mol·L-1HOAc的离解度为1.32%;(2)0.2mol·L-1HOAc的离解度为0.93%,求HOAc的离解常数。

解:(1)

(2)

从例1可以看出,对不同浓度HOAc溶液,在一定温度下,所计算出来的离解常数基本是一致的。表2-1是HOAc溶液在25℃时,不同浓度的离解度以及由离解度计算出来的离解常数值。

表2-1  25℃,不同浓度醋酸的离解度和离解常数

浓度/mol·L-1

离解度/%

离解常数

0.001

12.4

1.76×10-5

0.01

4.1

1.76×10-5

0.02

2.96

1.80×10-5

0.1

1.32

1.76×10-5

0.2

0.93

1.76×10-5

利用离解常数可以计算一定浓度某弱酸溶液中的H+浓度,或计算弱碱溶液中的OH-=浓度。

式中HA为弱酸,BOH为弱碱。

在浓度为c的弱酸中,[H+]=cα,即α=[H+]/c,又根据稀释定律, ,   则

(2-3)

同理,在浓度为c的弱碱溶液中,

(2-4)

根据式(2-3)和式(2-4),可以计算一定浓度的弱酸或弱碱的[H+]或[OH-]。

离解常数的大小用以衡量酸或碱的强弱程度。酸或碱越弱,它们的离解常数值就越小。一般认为KI在10-5至10-9范围内的电解质是弱电解质;KI值小于10-10时是极弱电解质。

(二)影响离解平衡的因素

弱酸和弱碱的离解平衡都是暂时的、相对的动态平衡。当外界条件改变时,离解平衡像其它平衡一样,会发生移动,结果弱酸和弱碱的离解程度都有所增减。因此,可以应用平衡移动原理,通过改变外界条件,控制弱酸和弱碱的离解程度。外界条件主要指温度,同离子效应和盐效应的影响。

1.温度的影响

温度变化能使离解平衡发生移动,这种移动是通过离解常数的改变实现的,但在常温范围内变化不大。

2.同离子效应

离子浓度的改变,对弱酸和弱碱离解程度的影响极为显著。

例如,在醋酸溶液中加入一些醋酸钠,由于醋酸钠是强电解质,在水溶液中完全离解Na+ OAc-,这样溶液中[OAc-]增大,使

离解平衡向左移动,从而降低了醋酸的离解度和溶液中的H+浓度。

又如,在氨水中加入一些氯化铵,由于氯化铵是强电解质,在水溶液中完全离解成NH4+和CL-,这样溶液中[NH4+]增大,使离解平衡向左移动,从而降低了氨水的离解度和溶液中的OH-浓度。

由此可以得出结论,在弱电解质溶液中,加入与弱电解质具有相同离子的强电解质,使弱电解质的离解度降低的效应,称为同离子效应。

3.盐效应

在弱电解质溶液中,加入与弱电解质没有相同离子的强电解质,而使弱电解质的离解度略微增大的效应,称为盐效应。

盐效应的产生,是由于强电解质的加入,使溶液中离子间的相互牵制作用增强,离子结合成分子的机会减少,降低了分子化的程度,因而达到平衡时,弱电解质的离解度比未加入强电解质时略微大些。

例如,在0.1mol·L-1HOAc溶液中加入NaCL晶体,使NaCL的浓度为 0.1mol·L-1时,[H+]不是1.32×10-3mol·L-1,而是1.70×10-3mol·L-1,离解度不是1.32%而是1.70%.

应该指出,在发生同离子效应的同时,必然伴随着盐效应的发生.这两个效应对弱电解质离解度影响不同.盐效应可以使弱电解质的离解度增大一些,而同离子效应可以使弱电解质的离解度大大降低.这说明同离子效应和盐效应对溶液酸碱性的影响是不能相提并论的.因此,对稀溶液来说,如不考虑盐效应,是不会引起很大误差的.

二、多元酸碱在溶液中的离解

多元酸碱在溶液中的离解是分步进行的,叫做分步离解。表2-2列出了一些常见的多元酸的分步离解常数。表中pKa为Ka的负对数值。

表2-2 一些常见的多元酸的分步离解常数

名称

酸性强度增加

2.2×10-13

12.67

二级离解

二级离解总比一级离解困难,因为H+要克服带有两个电荷的C2O2-4对它的吸引。从Ka1和Ka2可以反映这一点。草酸溶液中的HC2O-4浓度要比C2O2-4浓度大得多。

磷酸的离解要分三步,有Ka1、Ka2、和Ka3三个离解常数,且Ka1》Ka2》Ka3。这说明多元酸分级离解是依次变难。

根据多元酸的浓度和各级离解常数,可以算出溶液中各种离子的浓度。

例2  计算0.1mol·L-1H2S溶液中的H+和S2-的浓度。

解:由于H2S的 Ka1》Ka2  ,所以H2S溶液中的H+主要来自第一步离解,而第一步离解所产生的H+,又抑制第二步离解。这样计算H2S溶液中H+的总浓度时,可以忽略第二步离解的H+,近似地等于第一步离解平衡时H+浓度。

设第一步离解平衡时[H+]=x,则[H+]≈[HS-],平衡时则有下列关系 :

由表2-2知H2S的Ka为9.1×10-8,则

因Ka1很小,x必然很小,所以0.1-x≈0.1,则

溶液中的S2-是第二步离解的产生,因此,计算溶液中的S2-浓度时,应根据第二步离解平衡进行计算.

设第二步离解时,[S2-]=y,平衡时有下列关系:

  

因为Ka1极小,y必然极小,所以9.54×10-5±y≈9.54×10-5,则

所以,[S2-]≈Ka2。

三、强电解质在溶液中的离解

(一)离子互吸学说

稀释定律适用于弱电解质溶液,而不适用于强电解质溶液。为了阐明强电解质在溶液中的实际情况,德拜(Debye)和休克尔(Huckel)提出了离子互吸学说,又叫完全电离学说。这种学说认为,强电解质在水溶液中完全离解成离子,离子在水溶液中并不完全自由。带异号电荷的离子相互吸引,距离近的吸引力大;带同号电荷的离子相互排斥,距离近的排斥力大。因此,离阳离子越近的地方,阳离子越少,阴离子越多;离阴离子越近的地方,阴离子越少,阳离子越多。总的结果是,任何一个离子都好像被一层球形对称的异号电荷离子所包围着。这层在中心阳离子周围所构成的球体,叫做离子氛。如图2-1所示,位于球体中心的离子称为中心离子,在中心阳离子周围有阴离子氛,在中心阴离子周围有阳离子氛。

图2-1 离子氛示意图

在离子氛的影响下,溶液中的离子受到带有相反电离子荷氛的影响,而不能完全自由活动。使强电解质溶液中的离子不能百分之百地发挥应有的效能。因此,实测的离解度总是小于100%,这不是强电解质的真实离解度,它反映了溶液中离子间相互影响的程度,我们把这种离解度称为表现离解度。而强电解质的真实离解度是100%。

后来发现在强电解质溶液中,不但有离子氛存在,而且相反电荷的离子还可以缔合成离子对作为一个独立单位而运动。有的离子对没有导电能力。离子对在遇到强力碰撞时,可以分开,随后又可以重新形成新的离子时对。离子对的存在也使自由离子的浓度下降,导致溶液的导电能力下降。

离子氛和离子对的形成显然与溶液的浓度和离子电荷有关。溶液愈浓,离子所带的电荷愈多,上述效应愈显著。

如取不同浓度的KCL溶液,测定它的离解度(α)值,根据稀释定律求得相就的离解常数值如表2-3。

表2-3  18℃,不同浓度KCL溶液的离解度和离解常数

电解质

C/mol·L-1

(2-6)

式中,I代表溶液的离子浓度;c是离子的量浓度;z是离子的电荷数.

例4  求0.01 mol·L-1NaCL溶液的离子强度.

解:I=1/2×(0.01×12+0.01×12)=0.01

例5  溶液中含有0.05 mol·L-1NaCL和0.01 mol·L-1KCL,求该溶液的离子强度.

解:I=1/2×(0.05×12+0.05×12+0.01×12+0.01×12)=0.06

离子活度系数随溶液中离子强度的改变而显著改变,表2-5列出了离子强度和平均活度系数的关系.溶液中离子强度越大,离子间的相互影响越强,离子活动受到的限制就越大。只有当溶液接近于无限稀释时,离子强度趋近于零,离子才能完全自由活动,这时离子的活度生活费数就接近于1,即离子活度就接近于离子的真实浓度。

表2-5 不同离子强度时离子的活度系数(25℃)

, 百拇医药

活度系数

离子强度

 电  荷  数

1

2

3

4

1×10-4

0.99

0.95

0.90

0.83

2×10-4

0.98

0.94

0.87

0.770.77

5×10-4

0.97

0.90

0.80

0.67

1×10-3

0.96

0.86

0.73

0.56

2×10-3

0.95

0.81

0.64

0.45

5×10-3

0.92

0.72

0.51

0.30

1×10-2

0.89

0.63

0.39

0.19

2×10-2

0.87

0.57

0.28

0.12

5×10-2

0.81

0.44

0.15

0.04

0.1

0.78

0.33

0.08

0.01

0.2

0.70

0.24

0.04

0.003

0.3

0.66

0.62

-

-