第四节 心电生理学
内科心脏血管疾病中,各种各样的心律失常是很常见的,而了解心电生理又是了解心律失常机制的基础。心电生理的内容非常广而复杂,本节中只涉及重要的某些方面,为了解心律失常的病理生理打下基础。
一、心脏的自律性(automaticity)
心脏颇有节律地自行搏动,就心电生理来讲即心脏细胞在有规律地、由节律点控制地周而复始地进行着除极与复极的活动。能够自发地进行这种活动的细胞称为节律细胞,从动作电位来看大体上可以分为两类,即①慢通道型—它的除极依赖于慢通道对Ca2+的开放,较缓慢,静息时的跨膜电位也不高(图2-12B)。窦房结和房室结的节律细胞属于此类。②快通道型—它的跨膜电位高(-85~-90mV),除极有赖于快通道对Na+的开放,除极迅速,希-浦纤维属于这类节律细胞(图2-12A)。
图2-12 心脏自律性的电生理
由完全复极的时间开始至除极的时间决定节律点的节率(次/min),即心动周期的时间(s或ms),其影响因素有如下。
(一)第4位相自发除极的速度 这是最主要的决定性因素。动作电位的第4位相,细胞内的正离子逐渐增多,使跨膜电位逐渐缩小,第4位相呈斜线上行,当达到除极阈值时即开始除极。第4位相自发除极的速度愈快,斜率愈大,则心动周期愈短,心率愈快。反之,心率就减慢。
第4位相的自发除极是由于细胞内、外离子交换的不平衡所致。一些研究提示,在第4位相,细胞膜对钾的通导率(conductance)减低,使较多的K+留在细胞内。也有些研究说明窦房结和房室结的细胞在第4位相时Na+进入细胞内的速度随时间而增强,即Na+在细胞内浓度增多。以上两种机制都可以使第4位相自发地除极(图2-13A)。
(二)除极阈值的改变 通常结性自律细胞的除极阈值为-55~-65mV,浦倾野细胞的阈值为-75mV左右,如阈值增大(更大的负值),则心动周期缩短,心率加快。反之,则心率减慢(图2-13B)。
(三)复极后的电位 如复极过度,则复极后的电位过大,第4位相达到阈值时间就延长,心率减慢。如复极不足则电位较小,更接近阈值,心率增快(图2-13C)。
图2-13 心肌收缩周期与除极速度的关系
通常,窦房结的节律较快,它的除极扩散传导到全心脏,成为正常的起搏点。但如因某种原因,窦律变慢,则下一级(通常为房室结),起而代之。如果由于某些因素下一级的自律细胞自律性增强,就可以超越窦房结之前而除极,并控制全心脏,这就成为异位心律,是早搏或异位性心动过速的原因之一。
交感神经兴奋过强,心肌缺血,常使异位的自律性增强。许多抗心律失常的药物能影响并减弱第4位相的自发性除极速度,使自律性降低。
二、心肌的传导功能
(一)传导功能及其影响因素 心肌细胞的结构是很特殊的,每一细胞的两端呈分支状而与其他细胞相连接,电离子可以在连接处的“间盘”(intercalated disc )自由通过。因此,心肌是一个相互通联的导体。当一端的心肌细胞除极后,它的除极波可以依序扩散到相连接的心肌组织,这称为心脏的传导性。传导的速度则取决于以下几种因素。
1.除极的波幅大小 波幅的大小代表着电位差的大小。压差愈大,其推动力愈强,传导的速度愈快。以心室肌为例,它的0位相波幅可达110~120mV,而在房室结则不过70~80mV ,前者的传导速度快,而后者则较慢。
2.除极的速度 即0位相上升的速度,上升速度愈快(快通道纤维),其传导也愈快。反之如慢通道纤维,其传导速度就缓慢。
3.传导的阻力 正常情况下电波的阻力很微小,但在病态情况下,如缺氧,则细胞间的阻力增大,传导减慢。纤细的纤维内阻也较粗纤维为大。
临床上有许多情况可以影响心肌(包括传导系统)的传导速度,例如在交感神经兴奋性增强时传导速度增快,反之迷走神经功能过强时则减慢。血钾过高、血钙过低均降低心肌细胞的除极幅度和速度,使传导减慢。缺血,不仅使传导的阻力增大,更重要的是影响除极速度和幅度,使传导减慢。
(二)递减性传导 递减性传导指的是在心肌组织中传导速度愈来愈慢,传导力也渐趋减弱。在异常情况下,如缺血的心肌组织,由于缺乏足够的能量供应,钠泵受抑制,除极幅度及速度均减弱,由正常心肌传来的推动力在进入缺血的组织后就逐渐减弱,严重时即产生传导阻滞。
在正常的心肌中,如房室结也存在着递减性传导,这是由于它是慢通道纤维,其除极的势能较低,而且它的纤维较细,内阻较大的原故。递减性传导在房室传导阻滞的机制中,占有重要位置。
(三)单向传导 单向传导(单向传导阻滞)指的是当心电传导沿着某一方向前进时,虽然传导减缓,但仍能通过,而从相反的方向传导时,即不能通过。它的机制是:
1.存在着递减性传导区 心肌的一部分存在着轻重不等的受损区,在激动由左向右进行时,借助于由正常心肌传来的较强的除极力量,它可以通过有障碍的区域,虽然它的势能减弱,传导速减缓了。当激动由右向左前进时,由于已受到前一段有传导障碍的心肌的影响,传导力量已趋减弱,最后则终止在有较重的传导障碍区(图2-14)。
图2-14 单向传导阻滞发生机理
2.心电活动的不均衡性 部分心肌受损后,它的极化程度不全,除极及复极的时间均较周围的心肌组织延缓。当激动由一个方向传来时,该部分心肌恰好处于不应期,不能将激动下传;而稍晚一些时候,激动由另一端绕行过来,该部心肌已恢复了传导性,激动就得以传过去。
以上两种机制可以独立起到作用,也可以合并存在而产生单向传导阻滞。单向传导阻滞是折反心律的重要条件之一。
快速性心律失常的发生机制,常可以从自律性的改变或传导功能的异常中找到解释,而两种机制并存共同导致心律失常的情况也很多见。
三、心脏的“易损期”和“超常应激期”
“易损期”是指在心电周期中一个特定的时期,在此时期内给予心室的刺激极易引起一连串的室性心动过速甚至室颤。这个时期在体表心电图上大致在T波的降支。在心室的复极过程中,相邻近的心肌组织存在着复极程序的差异。在易损期内,一部分心室肌已完全恢复了应激和传导的正常功能,而另一部分心肌,虽然也已恢复了应激功能,甚至它的应激状态是处于超常期(见下),但是由于Na+通道并未完全恢复,在应激后这部位心肌的除极波小而缓慢,激动的传导速度也缓慢,也就是这样存在着一个单向传导阻滞区。如果恰恰此时有一个刺激(例如早搏),则极易引起一系列的折返激动,发生室性心动过速或室颤。
“超常应激期”是指动作电位上的一个时期,心肌在低于正常强度的刺激下即可以诱发一个激动,即在此期内可以引起激动的阈值低于正常。超常应激期在动作电位上是在第3位相的末端延伸到第4位相的起始部位,它是在相对不应期之后,而在心肌完全恢复应激功能之前。在此期间,虽然心肌能被低于正常能量的刺激所激动,但由于此时期Na+通道的功能尚未完全恢复,其产生的动作电位是低幅的、缓慢的,其传导功能也是低下的。
超常应激期的确切机制尚不清楚。它和易损期的时间大致相同,但两者并非直接相关。重要的事实是,在易损期由于同时存在着超常应激状态,一个较低强度的电刺激即可诱发室性心动过速或室颤。
(方 圻)
校对、排版 2000/05/13 白艳萍
, http://www.100md.com