当前位置: 首页 > 中医药 > 中药专业 > 中药制剂 > 剂型研究
编号:11521443
聚醚高分子表面活性剂的性质(胶束化)
http://www.100md.com 2007年11月23日

     聚醚高分子表面活性剂的性质(胶束化)

    PEO-PPO-PEO嵌段共聚物是典型的高分子表面活性剂,与小分子表面活性剂的性质不同,如胶束内核含有大量的水、外界因素对胶束结构有显著影响等:另一方面PEO-PPO-PEO嵌段共聚物具有温度敏感胶束化、温度敏感增溶以及温度敏感的液晶晶型结构等特点,鉴于对PEO-PPO-PEO嵌段共聚物物理化学性质的研究是扩展其应用领域的关键,许多研究小组从不同的技术,考察PEO-PPO-PEO嵌段共聚物的物理化学性质。

    a.理论模型

    Linse[1-3]从平均场格子理论基础上对PEO-PPO-PEO三嵌段共聚物在溶液中的胶束化进行了研究,通过实验得到了Pluroni型高分子表面活性剂的CMC、聚集数、水力半径受温度影响的半定量关系,发现分子量的增加或分子中EO/PO比的减小有利于在给定聚合物浓度下胶束化起始温度的降低,也相应地有利于在给定温度下CMC的降低。图1是Linse等人建立的格子理论模型图。

    多种模型可以用于模拟表面活性剂在水溶液中的胶束化行为,最著名的是Hurter[4,5]习等使用自洽均匀场晶格理论模拟PEO-PPO-PEO嵌段共聚物在水溶液中的胶束化,均匀场近似限制在二维空间(同心的格子层内),应用步长加权的随机行走描述非均相体系。聚合物链节和溶剂分子分布在格子内,每条聚合物有多种构造方式,链节作用对自由能的贡献可用Flory-Huggins作用参数表达,在自由能最小的条件下确定每种构造的聚合物链数,大致计算出平衡时链节的密度。自洽均匀场模型PEO-PPO-PEO嵌段共聚物的结果表明PO链段组成胶束的内核,胶束的内核中包裹有部分的水,胶束的内核和外核之间以及胶束的外壳和溶剂水之间没有严格的分界,而是扩散的界面。Hurte:进一步模拟了PEO-PPO-PEO嵌段共聚物增溶多环芳香烃,一个多环芳香烃分子占据一个格子,芳香烃的增溶影响PEO-PPO-PEOO嵌段共聚物胶束的结构,降低胶束内核的含水量,自洽均匀场理论模型的胶束结构与实验观察的结果相一致。均匀场理论还能模拟PEO-PPO-PEO嵌段共聚物的三维介观结构,有序无序结构转变以及嵌段共聚物的熔化过程。 较高浓度的PEO-PPO-PEO嵌段共聚物水溶液的温度依赖的凝胶化、PEO一PPO一EPO嵌段共聚物在“油”中形成反相胶束以及PEO-PPO-PEO嵌段共聚物一水一油三元体系丰富的相结构也是PEO-PPO-PEO嵌段共聚物的重要性质,也引起了许多研究者的兴趣。

    b.临界胶束浓度和临界胶束温度

    Alexandridis[6-10]等采用表面张力和光散射等方法,系统地测量PEO-PPO-PEO嵌段共聚物的临界胶束浓度(简写为CMC)和临界胶束温度(C MT),在低浓度和低温区域,嵌段共聚物以单分子形式存在于水溶液中,增加浓度至CMC或升高温度至CMT,都可以引起嵌段共聚物的聚集,形成多分子胶束,PEO-PPO-PEO嵌段共聚物由疏水的PPO内核和水化的PEO外壳组成。CMC和CMT是表征嵌段共聚物聚集行为的基本参数。

    温度敏感胶束化是PEO-PPO-PEO嵌段共聚物重要的物理化学性质。温度升高,PPO链段的部分链节转变为扭曲构象,此结构与水化层不匹配,导致PPO链段逐渐失去水化层。Chang和Xiongll,[12]等使用静态和动态激光光散射研究非离子高分子表面活性剂F68在水溶液中的聚集行为,随着温度的升高依次出现三个温度区域:单分子区、转变区和胶束区。转变区是单分子和胶束共存的区域。在转变区,随着温度的升高,单分子体的数目降低,嵌段共聚物不断地集形成胶束。亲水性很强的Pluronic F68胶束的粒径保持在8nm左右,受温度的影响很小,而疏水性强的嵌段共聚物胶束的聚集随温度的升高逐渐增大。PEO-PPO-PEO嵌段共聚物的胶束形成与其分子特征(嵌段共聚物的分子量、EO/PO比例等)有关。研究发现,亲水性强(PEO含量高)的嵌段共聚物,必须在较高的温度和浓度下才能形成胶束.具有相同PEO链段和不同PPO链段的嵌段共聚物,CMC和CMT随着PPO含量的增加而降低.PPO链段是PEO-PPO-PEO嵌段共聚物在较低温度形成胶束的主要因素.具有相同EO/PO比率的嵌段共聚物,CMC和CMT随着PEO-PPO-PEO嵌段共聚物分子量的增加而降低。

    c.胶束的聚集数、大小和结构

    动态和静态激光光散射技术可以测量嵌段共聚物胶束的重均分子量、Z均分子量和胶束流体力学半径(R)。在Pluronic P103、P104和P105系列嵌段共聚物胶束中,具有相近的PPO链段,PEO链段越大的嵌段共聚物形成的胶束的聚集数越小。在Pluronic P103和P123系列嵌段共聚物中EO份O比相同,分子量大的形成的胶束聚集数大[13]。 小角中子散射(small-angle neutron scattering,简写为SANS)实验表明[14-1 6]水溶液中PEO-PPO-PEO嵌段共聚物胶束是球形的,使用胶束内核半径(coreradius)、硬球相互作用半径(hard一sphere interaction radius)和硬球的体积分数

    (hard-sPhere volulne fraction)三个参数能较好地拟定中子散射强度曲线。在低温下拟定得到的体积分数为0,表明嵌段共聚物没有形成胶束,单分子体以高分子线束形式存在;升高温度,拟定得到的体积分数逐渐增大,嵌段共聚物聚集形成球形胶束。但在较高温度条件下,Mortensen[14]等发现拟定结果不好,认为嵌段共聚物胶束形状发生了变化。Pluronic P85在温度高于70℃,球形胶束化过程中,SANS结果亦表明胶束的聚集数随温度的升高而增加,而硬球相互作用半径,基本不随温度改变。

    近来,研究者使用SANS技术研究揭示PEO一PPO一PEO嵌段共聚物胶束包含的精细结构,认为PEO-PPO-PEO嵌段共聚物包含着大量的水,并且胶束内的水分布是不均匀的,即内核的含水量不同于胶束外壳的含水量,Goldmints[17,18]等使用三参数(胶束内核半径、胶束外核半径和胶束聚集数)模型拟合小角中子散射强度曲线,发现随温度的升高,Pluronic P85的聚集数增大。初始形成的胶束内核包含高达60%的水,温度升高导致胶束的聚集数增大,由于胶束内核的含水量逐渐降低,胶束内核的半径基本不随温度变化,、Yang[19]等进一步发展了四参数(胶束的内核半径、外核半径、硬球相互作用半径和胶束聚集数)模型拟合Pluronic L64在D20中的小角中子散射强度曲线更清楚地反映了胶束内部水的分布及其水含量随温度的变化。Pluronic L64在DZO中胶束内核的PPO体积分数随温度的升高变化不大。

    d.荧光研究聚集行为

    众所周知,荧光是研究高分子聚集体常用的方法。花的荧光光谱有五个单体振动峰,其中第一峰与第三峰的强度之比I1/ I3对花所处的微环境的极性很敏感。I1/I3比值越小,花的微环境的疏水性越强,由此变化可断定是否形成了高分子聚集体。Nivaggioli[20]等人研究T花探针在PEO-PPO-PEO水溶液、PEO和PPO各自的本体溶液及各种有机溶剂中I:几随温度变化的关系。在有机溶剂和PEO、PPO本体溶液中I1几均随温度线性降低,而在PEO-PPO-PEO水溶液中I1/I3变化曲线呈现三个部分:在低温下,11几随温度线性下降,曲线类似于在纯水中;在中等温度下,I1几随温度变化急剧下降,说明溶液中形成了高分子表面活性剂的胶束;在更高的温度下,二者又呈线性关系。I1/I3的值受分子中PPO含量的影响很大,这就说明胶束内核主要是由PPO组成。他们通过光散射和荧光碎灭分别研究了PEO-PPO-PEO形成胶束的尺寸和聚集数,数据表明,随着温度的升高聚集数增加,而每个EO上的水分子数下降。光散射的结果显示在30一40℃时SDS胶束直径约为3.2lum,而P104胶束的直径为16.2nm,内核直径约9nm.

    M.Almgren[2l]等人研究了PEO一PPO一PEO的相行为与聚集性质,发现这些三嵌段共聚物的相行为在许多方面类似于传统的非离子表面活性剂,在高浓度下也会出现六方、四方和层状液晶相。在水溶液中胶束形成的临界浓度受温度的影响很大,在一定浓度下单体向胶束的转化经历了一个比较宽的温度范围,这可能是由于PO、EO嵌段的多分散度造成的。对于Pluronic共聚物来说,在某一温度之上会发生球状到棒状胶束的转变,这会导致溶液粘度和粘弹性的急剧上升。NMR和荧光的进一步研究表明随着温度的升高胶束水力半径下降,这是由于升温后胶束的PEO壳被压缩,而胶束的内核在PPO基础上包容了一部分PEO和水,核壳之间的区分不如正常胶束的明显。

    [1] Linse,P Macromolecules,1993,26,4437-4449.

    [2] Linse,P Macromolecules,1994,27, 2685一2693.

    [3] Linse,P. J.Phys.Chem.,1993,97,13896一13902.

    [4] Hurte, P. N.;Scheutjens,J.M.H.M.;Hatton,T. A. Macromolecules,1993,26,5592-5601.

    [5] Hurte, P. N.;Scheutjens,J.M.H.M.;Hatton,T. A .Macromolecules,1993,26,5030-5040.

    [6]Alexandridis,R;Hatton,T. A.COlloid SurfA: Physicochemical and Engineering

    Aspects,1995,96,1-46

    [7]Alexandridis,P.;Athanassiou,V;Fukuda, S;Hatton,T. A. Langmuir,1994,10,2604-2612.

    [8]Alexandridis,P.;Holzwarth,J.F.;Hatton,T. A. Macromolecules,1994,27,2414-2425.

    [9] Alexandridis,P.;Nivaggioli,T.;Hatton,T.A.Langmuir,1995,11,1468-1476.

    [10] Alexandridis,P.;Athanassiou,V;Hatton,T. A.Langmuir,1995,11,2442-2450.

    [11] Chang,Y.;prange,R.;Allcock,H.R.;Lee,S.C;Kim,C.MacromoleCules,2002,35,8556.

    [12] Xiong,X.Y; Tam,K.C.;Gan,L.H. Macromolecules,2003,36,9979.

    [13] Nolan,S.L.hiliPs,R.J.;Cotts,P. M.;Dungan,S.R.J COlloid Interface Sci.,1997.191,291-302.

    [14」Mortensen,K.;Brown,W. Macromolecules,1993,26,4128-4136.

    [15] Mortensen,K.edersen,J.s.Macromolecules,1993,26,805-812.

    [16] Jain,N.J.;Aswal,V K.;Goyal,R 5.;Bahadur, P. J Phy.,.Chem.B,1998,102,8452-8458.

    [17」Goldmints, I.;von Gottberg,F.K.;Smith,K.S.;Hatton,T. A.;Langmuir,1997,13,3659-3664.

    [18] Goldmints,I; Yu,G;Booth,C.;Smith,K.S.;Hatton,T. A.;Langmuir,1999,15,1651-1656.

    [19] Yang,L.;Alexandridis,P.;Steytler,D.C.;Kositza,M.J.;Holzwarth,J.F.Langmuir,2000,16,8555-8561.

    [20]

    Nivaggioli,T.;Winnik,M;Langmuir,1995,11,730-737、[21]

    Almgren,M.; Brown,W.;Hvidt,S.Colloid Polym Sci,1995,273,2-15.
    婵犵數濮烽弫鎼佸磿閹寸姴绶ら柦妯侯棦濞差亝鍋愰悹鍥皺椤︻厼鈹戦悩缁樻锭婵炲眰鍊濋、姘舵焼瀹ュ棛鍘卞┑鐐村灥瀹曨剟寮搁妶鍡愪簻闁冲搫鍟崢鎾煛鐏炲墽鈽夐柍钘夘樀瀹曪繝鎮欏顔介獎闂備礁鎼ˇ顐﹀疾濠婂吘娑㈠礃椤旇壈鎽曞┑鐐村灦鑿ら柡瀣叄閻擃偊宕堕妸锕€鐨戦梺绋款儐閹歌崵绮嬮幒鏂哄亾閿濆簼绨介柛鏃撶畱椤啴濡堕崱妤€娼戦梺绋款儐閹瑰洭寮诲☉銏″亹鐎规洖娲㈤埀顒佸笚娣囧﹪宕f径濠傤潓闂佸疇顫夐崹鍨暦閸洖鐓橀柣鎰靛墰娴滄瑩姊虹拠鏌ヮ€楃紒鐘茬Ч瀹曟洟宕¢悙宥嗙☉閳藉濮€閻橀潧濮︽俊鐐€栫敮鎺椝囬鐐村€堕柨鏃傜摂濞堜粙鏌i幇顒佲枙闁稿孩姊归〃銉╂倷閸欏鏋犲銈冨灪濡啫鐣烽妸鈺婃晣闁绘劙娼ч幖绋库攽閻樺灚鏆╅柛瀣█楠炴捇顢旈崱妤冪瓘闂佽鍨奸悘鎰洪鍕吅闂佺粯锚閸氣偓缂佹顦靛娲箰鎼达絿鐣甸梺鐟板槻椤戝鐣烽悽绋块唶婵犮埄浜濆Λ鍐极閸屾粎椹抽悗锝庝簻婵″ジ姊绘担鍛婃喐闁稿鍋ら獮鎰板箮閽樺鎽曢梺鍝勬储閸ㄥ綊鐛姀銈嗙厸闁搞儮鏅涘瓭婵犵鈧尙鐭欓柡宀嬬秮婵偓闁宠桨鑳舵禒鈺冪磽閸屾氨孝闁挎洦浜悰顔界節閸ャ劍娅㈤梺缁樓圭亸娆撴偪閳ь剚淇婇悙顏勨偓鏍箰妤e啫纾婚柣鏂挎憸椤╃兘鏌熼幍顔碱暭闁抽攱鍨块弻娑㈡晜鐠囨彃绗岄梺鑽ゅ枑閸f潙煤椤忓嫀褔鏌涢妷顔惧帥婵炶偐鍠栧娲礃閸欏鍎撻梺鐟板暱濮橈妇鎹㈠鑸碘拻濞达絽鎳欒ぐ鎺戝珘妞ゆ帒鍊婚惌娆撴煙閻戞﹩娈曢柛濠傜仛閵囧嫰寮崹顔规寖缂佺偓鍎抽妶鎼佸蓟閿熺姴绀冮柕濞垮劗閸嬫挾绮欓幐搴㈢槑濠电姷鏁告慨顓㈠箯閸愵喖绀嬮柛顭戝亞閺夊綊鏌f惔銏╁晱闁哥姵鐗犻幃銉╂偂鎼达絾娈惧┑顔姐仜閸嬫挸鈹戦埄鍐憙妞わ附濞婇弻娑㈠箻閺夋垹浠哥紓浣虹帛缁嬫捇鍩€椤掍胶鈯曞畝锝呮健閹本绻濋崑鑺ユ閹晠宕f径瀣瀾闂備浇妗ㄧ欢锟犲闯閿濆鈧線寮撮姀鈩冩珕闂佽姤锚椤︿粙鍩€椤掍胶鈽夐柍瑙勫灴閺佸秹宕熼锛勬崟濠电姭鎷冮崨顔界彧缂備緡鍠楅悷锔炬崲濠靛鐐婇柕濞у啫绠版繝鐢靛О閸ㄧ厧鈻斿☉銏℃櫇闁靛牆顦Ч鏌ユ煛閸モ晛鏋戦柛娆忕箻閺岋綁鎮㈤悡搴濆枈濠碘槅鍨崑鎾绘⒒娴h姤銆冪紒鈧担铏圭煋闁圭虎鍠楅崑鈺傜節闂堟侗鍎忕紒鈧崘鈹夸簻妞ゆ挾鍠庨悘锝夋煙鐎电ǹ鍘存慨濠勭帛閹峰懐绮电€n亝鐣伴梻浣告憸婵敻骞戦崶褏鏆︽繝闈涳功閻も偓濠电偞鍨兼ご鎼佸疾閿濆洨纾介柛灞剧懅閸斿秴鐣濋敐鍛仴闁糕斂鍨藉顕€宕奸悢鍝勫箺闂備胶鎳撻顓㈠磿閹寸偟鐟规繛鎴欏灪閻撴洟鏌¢崒姘变虎闁哄棴缍侀弻鈥崇暆鐎n剛鐦堥悗瑙勬礃鐢帡锝炲┑瀣垫晣闁绘﹢娼ч獮鈧紓鍌氬€搁崐鐑芥倿閿曞倶鈧啴宕ㄥ銈呮喘閺屽棗顓奸崨顖氬Е婵$偑鍊栫敮鎺楀窗濮橆兗缂氶柟閭﹀枤绾惧吋銇勯弮鍥т汗缂佺姴顭烽弻銊モ攽閸繀妲愰梺杞扮閸熸潙鐣烽幒鎴僵闁告鍋為幉銏ゆ⒒娴h棄鍚瑰┑鐐╁亾缂傚倸鍊归懝楣冨煝瀹ュ鏅查柛銉㈡櫇閻撳姊洪崜鑼帥闁哥姵鎹囬崺鈧い鎺嶇缁楁帗銇勯锝囩疄妞ゃ垺锕㈤幃鈺咁敃閿濆孩缍岄梻鍌氬€风欢姘缚瑜嶇叅闁靛牆鎮垮ú顏勎╅柍杞拌兌閸旓箑顪冮妶鍡楃瑨闁稿妫濆銊╂偋閸垻顔曟繝銏f硾椤戝洤煤鐎电硶鍋撶憴鍕8闁搞劏濮ゆ穱濠囧醇閺囩偟鍊為梺闈浨归崕鐑樺閺囥垺鐓熼柣鏂挎憸閻苯顭胯椤ㄥ牓寮鍢夋棃宕崘顏嗏棨濠电姰鍨奸崺鏍礉閺嶎厼纾婚柨婵嗩槹閻撴洟鏌曟径妯虹仩妞も晩鍓欓埥澶愬箻閻熸壆姣㈢紓浣介哺鐢岣胯箛娑樜╃憸蹇涙偩婵傚憡鈷戠憸鐗堝俯濡垵鈹戦悙鈺佷壕闂備浇顕栭崰妤冨垝閹捐绠板┑鐘插暙缁剁偛顭跨捄铏圭伇婵﹦鍋撶换婵嬫偨闂堟稐绮跺銈嗘处閸樹粙骞堥妸锔哄亝闁告劑鍔嶅Σ顒勬⒑閸濆嫮鈻夐柛妯恒偢瀹曞綊宕掗悙瀵稿帾婵犵數鍋熼崑鎾斥枍閸℃稒鐓曢悗锝冨妼婵″ジ妫佹径鎰叆婵犻潧妫欓崳褰掓煛閸℃瑥鏋戝ǎ鍥э躬椤㈡稑顫濋崡鐐╁徍婵犳鍠栭敃銉ヮ渻娴犲鈧線寮撮姀鈩冩珳闂佺硶鍓濋悷锕傤敇婵犳碍鈷掑ù锝堟鐢盯鏌熺喊鍗炰簽闁瑰箍鍨归埞鎴犫偓锝庡墮缁侊箓鏌f惔顖滅У闁哥姵鐗滅划濠氭晲閸℃瑧鐦堟繝鐢靛Т閸婃悂顢旈锔界厵闁哄鍋勬慨鍌涙叏婵犲啯銇濇鐐村姈閹棃鏁愰崒娑辨綌闂傚倷绀侀幖顐︽偋濠婂牆绀堥柣鏃堫棑閺嗭箓鏌i悢绋款棎闁割偒浜弻娑㈠即閵娿儱瀛e┑鐐存綑鐎氼剟鈥旈崘顔嘉ч柛鈩冾殘閻熸劙姊虹紒妯洪嚋缂佺姵鎸搁锝夊箮缁涘鏅滈梺鍓插亞閸犳捇宕㈤柆宥嗏拺闁荤喓澧楅幆鍫㈢磼婢跺缍戦柣锝囨暬瀹曞崬鈽夊▎鎴濆笚闁荤喐绮嶇划鎾崇暦濠婂喚娼╂い鎺戭槹閸嶇敻姊洪棃娴ュ牓寮插⿰鍫濈;闁稿瞼鍋為悡銉╂煟閺傛寧鎯堢€涙繈鏌i悢鍝ユ嚂缂佺姵鎹囬悰顕€寮介鐐殿啇濡炪倖鎸鹃崑鐔哥椤栨粎纾藉ù锝嗗絻娴滅偓绻濋姀锝嗙【闁愁垱娲濋妵鎰板箳閹寸媭妲梻浣呵圭换妤呭磻閹邦兘鏋旈柕鍫濐槹閳锋垹绱撴担璐細缂佺姵鐗犻弻锝夊煛婵犲倻浠╅梺浼欑悼閸忔﹢寮幘缁樺亹闁肩⒈鍓﹀Σ浼存⒒娴h棄浜归柍宄扮墦瀹曟粌顫濇0婵囨櫓闂佺鎻梽鍕煕閹达附鍋i柛銉岛閸嬫捇鎼归銈勭按闂傚倷绀侀幉锟犲蓟閵婏富娈介柟闂寸閻撴繈鏌熼幑鎰靛殭缂佺媴缍侀弻锝夊箛椤撶喓绋囧銈呭閹告悂鍩為幋锔藉亹閻犲泧鍐х矗闂備礁鎽滈崳銉╁垂閸洜宓侀柛鈩冪☉绾惧吋鎱ㄩ敐搴″箹缂傚秴锕獮鍐煛閸涱厾顔岄梺鍦劋缁诲倹淇婇柨瀣瘈闁汇垽娼цⅴ闂佺ǹ顑嗛幑鍥蓟閻斿皝鏋旈柛顭戝枟閻忔挾绱掓ィ鍐暫缂佺姵鐗犲濠氭偄鐞涒€充壕闁汇垻娅ラ悷鐗堟瘎闂佽崵鍠愮划搴㈡櫠濡ゅ懏鍋傞柨鐔哄Т閽冪喐绻涢幋娆忕仼缂佺姵濞婇弻锟犲磼濮樿鲸鐨戦梺鍝勵儏閹冲酣鍩為幋锔藉€烽柛娆忣槸濞咃綁姊绘担绋跨盎缂佽尙鍋撶粚杈ㄧ節閸パ咁啋濡炪倖妫佹慨銈呪枍閵忋倖鈷戦悹鎭掑妼濞呮劙鏌熼崙銈嗗

   闂傚倷娴囬褍霉閻戣棄鏋佸┑鐘宠壘绾捐鈹戦悩鍙夋悙缂佹劖顨婇弻锟犲炊閳轰焦鐏侀梺宕囨嚀缁夋挳鍩為幋锔藉亹闁告瑥顦伴幃娆忊攽閳藉棗浜濋柨鏇樺灲瀵鈽夐姀鐘栥劑鏌曡箛濠傚⒉闁绘繃鐗犻幃宄扳堪閸愩劎鐩庨梺鐟板殩閹凤拷  闂傚倸鍊搁崐鐑芥嚄閼哥數浠氱紓鍌欒兌缁垶銆冮崨鏉戠厺鐎广儱顦崡鎶芥煏韫囨洖校闁诲寒鍓熷铏圭磼濡搫顫庨梺绋跨昂閸婃繂鐣烽弴鐐垫殕闁告洦鍓涢崢浠嬫⒑闁稑宓嗘繛浣冲嫭娅犳い鏂款潟娴滄粓骞栭幖顓炵仭閻庢熬鎷�  闂傚倸鍊峰ù鍥х暦閸偅鍙忛柡澶嬪殮濞差亜围闁搞儻绲芥禍鐐叏濡厧甯堕柣蹇ラ檮閵囧嫰濮€閿涘嫭鍣板Δ鐘靛仜椤戝寮崘顔肩劦妞ゆ帒鍊婚惌鍡涙煕閺囥劌鐏¢柣鎾跺枑娣囧﹪顢涘┑鎰缂備浇灏畷鐢垫閹炬剚鍚嬮煫鍥ㄦ煥椤忥拷  闂傚倸鍊搁崐鐑芥嚄閸洖绠犻柟鎹愵嚙鐟欙箓鎮楅敐搴″闁搞劍绻堥獮鏍庨鈧俊鑲╃棯閹佸仮闁哄本娲樼换娑㈡倷椤掍胶褰呴梻浣告啞椤ㄥ棙绻涙繝鍥ц摕闁斥晛鍟欢鐐烘倵閿濆簼绨介柛鏃偳归埞鎴﹀煡閸℃浼堥梺鐟板殩閹凤拷