当前位置: 首页 > 期刊 > 《世界华人消化杂志》 > 2001年第6期
编号:10697260
分泌型抗肝癌单链双功能抗体融合GFP真核表达载体的构建及表达
http://www.100md.com 2001年6月15日 《世界华人消化杂志》 2001年第6期
     1中国人民解放军第四军医大学基础部病理学教研室 陕西省西安市 710033

    2中国人民解放军第四军医大学唐都医院骨科 陕西省西安市 710038

    程虹,女,1967-06-24生,安徽省宣州市人,汉族. 1996年获第四军医大学病理学博士, 主要从事肝癌的免疫基因治疗研究.

    项目负责人
程虹, 710033, 陕西省西安市长乐西路169号,中国人民解放军第四军医大学基础部病理学教研室.

    Department of Pathology, Faculty of Preclinical Medicine, Fourth Military Medical University, Xi'an 710033, Shaanxi Province, China

    Correspondence to:
Hong Cheng, Department of Pathology, Fourth Military Medical University, Xi'an 710033,Shaanxi Province, China

    Tel. 0086-29-3577167(H), 3374541 Ext.324(O)

    Email. chenghong@fmmu.edu.cn

    Received 2001-02-06 Accepted 2001-02-12

    Construction and expression of anti-HCC immunotoxin of sFv-TNF-α and GFP fusion proteins

    Hong Cheng, Yan-Fang Liu, Hui-Zhong Zhang, Wan-An Shen and Su-Zhen Zhang

    

    Abstract


    AIM To study the construction and expression of anti-HCC single-chain bifunctional antibody (sFv-TNF-α) and GFP fusion proteins.

    METHODS
A single-chain antibody (sFv) gene comprising the linked heavy and light chain variable regions derived from a monoclonal antibody with high specifity and affinity binding to hepatocellular carcinoma (HCC) were first added leader sequence by polymerase chain reaction (PCR) and then fused inframe with human tumor necrosis factor-α (TNF-α) gene. The recombinant sFv-TNF-α gene was cloned into an expression vector pEGFP-N3 containing the report gene of GFP, and the recombinant vector was first identified with enzyme digestions for the correct insertion and further confirmed by DNA sequence analysis. To investigate whether mammalian cells could produce fusion protein, NIH3T3 cells were transfected with the plasmid pEGFP-ST by Calcium Phosphate method.

    RESULTS The recombinant vector was identified with enzyme digestions for the correct insertion and further confirmed by DNA sequence analysis. Bright green fluorescence in the cytoplasm of the transfected NIH3T3 cells was observed under the fluorescence microscope 20 hours after transfection of the recombinant vector.

    CONCLUSION The gene of single-chain bifunctional antibody was constructed. The fusion proteins of anti-HCC single-chain bifunctional antibody and GFP were successfully expressed in NIH3T3 cells. It is suggested that mammalian cells can express antibody-cytokine fusion proteins, which may be theoretically necessary for our next step of study in a gene therapy.

    

    Subject headings
hepatocellular carcinoma; single-chain antibody; tumor necrosis factor-α; green fluorescent protein; gene expression

    Cheng H, Liu YF, Zhang HZ, Shen WA, Zhang SZ. Construction and expression of anti-HCC immunotoxin of sFv-TNF-α and GFP fusion proteins. Shijie Huaren Xiaohua Zazhi, 2001;9(6):640-644

    

    摘


    目的 分泌型抗肝癌单链双功能抗体融合GFP真核表达载体的构建及表达.

    方法 采用PCR方法在抗肝癌sFv的5'端引入引导序列使其能够在真核细胞中表达并分泌,在其下游连接人TNF-α基因,构建分泌型抗肝癌单链双功能抗体基因,并将该基因克隆入带有GFP报告基因的真核表达载体,用磷酸钙共沉淀法转染小鼠成纤维细胞NIH3T3进行瞬时表达.

    结果 DNA序列分析证实在sFv 的5'端引入正确的60bp引导肽序列, 酶切鉴定证明成功构建了分泌型抗肝癌单链双功能抗体融合GFP真核表达载体,并在NIH3T3细胞中成功地表达了融合荧光蛋白.

    结论 成功构建并表达了分泌型抗肝癌单链双功能抗体融合GFP基因,为肝癌免疫基因治疗的进一步研究奠定了基础.

    

    主题词
肝细胞癌;单链抗体(sFv); 肿瘤坏死因子(TNF-α); 绿色荧光蛋白(GFP); 基因表达

    程虹, 刘彦仿, 张惠中, 沈万安, 张素珍. 分泌型抗肝癌单链双功能抗体融合GFP真核表达载体的构建及表达.

    世界华人消化杂志,2001;9(6):640-644

    

    0 引言


    肝细胞肝癌(hepatocellular carcinoma, HCC)恶性程度极高,在我国有着较高发病率和死亡率[1-4],迄今尚无理想的治疗手段[5-14]. 随着现代分子生物学和免疫学的发展,基因工程抗体的诞生为肿瘤的诊断和治疗带来了希望[15-17],尤其是单链抗体的应用成为肿瘤免疫基因治疗的热点[18,19]. 我室曾成功构建并高效原核表达了抗肝癌sFv,体外免疫细胞化学实验表明,其对肝癌细胞具有明确的反应[20,21]. 我们用PCR方法在该sFv 的5'端引入引导序列使其能够在真核细胞中表达并分泌,在其下游连接人肿瘤坏死因子(tumour necrosis factor-α, TNF-α)基因,构建分泌型抗肝癌单链双功能抗体基因,并将该基因克隆入带有绿色荧光蛋白(green fluorescent protein,GFP)报告基因的真核表达载体,在小鼠成纤维细胞NIH3T3中瞬时表达sFv-TNFα-GFP融合蛋白,以便灵敏、直观、有效地观察目的基因在真核细胞中的表达,为肝癌免疫基因治疗的进一步研究奠定了基础.

    1 材料和方法

    1.1 材料
pEGFP-N3质粒(内含GFP基因)由赵利军博士惠赠,抗肝癌sFv基因为本室构建,TNF-α基因由孙志伟博士惠赠. 大肠杆菌JM109,pGEM-T载体和磷酸钙转染试剂盒购自Promega公司;限制性内切酶、T4DNA连接酶、X-gal及IPTG购自Gibco公司;PCR引物由上海生物工程公司合成.

    1.2 方法

    1.2.1 PCR引物的设计与合成 根据本实验室克隆抗肝癌sFv的cDNA序列,Oligo软件优化设计出上、下游引物,在sFv的5'端引入酶切位点EcoRⅠ和引导肽基因序列,3'端引入酶切位点SalⅠ. 由于引导肽基因序列较长,故设计了一对上游引物,通过两轮PCR反应来引入完整引导序列. 根据人TNFα的cDNA序列,Oligo软件优化设计出上、下游引物,两端分别引入SalⅠ和SacⅡ位点. 所有引物均由上海生物工程有限公司合成,序列如下:

    SFv下游引物: sFv-1: 5'CCGTCGACACGT-TTGATCTCGACCTTGG3'

    SFv上游引物: sFv-2: 5'GTTTTAAAAGGT-GTCCAGTGTCCAGTGTGAGGTGCAGCTGGTGGAGTCGG3'

    sFv-3: 5'CTGAATT-CATGAACTTCGGGCTCAGCTTGATTTTCCTTGTCCTTGTTTTAAAAGGTGCCAGTG3'

    引导肽基因序列:ATGAACTTCGGGCT-CAGCTTGATTTTCCTTGTCCTTGTTTTAAAAGGTGCCAGTGT 引自Peter Buckel,1987 (Gene,1987; 51:13-19).

    TNFα下游引物: TNFα-1: 5'TCCCCGCGGCAG-GGCAATGACCCCAAAGTAG3'

    TNFα上游引物: TNFα-2: 5'CCGTCGACGTCA-GATCATCTTCTCGAAC3'

    1.2.2 sFv和TNF-α基因片段的扩增 以质粒pGEX-sFv为模板,用引物sFv-1和sFv-2进行第1轮PCR反应,15g·L-1琼脂糖凝胶电泳分离PCR产物,低熔点琼脂糖凝胶回收760bp大小的条带,WizardTM Minicolumn 纯化(按试剂盒提供方法进行). 再以纯化的第1轮PCR产物为模板,sFv-1和sFv-3为引物进行第2轮PCR反应,循环结束后,同样方法分离、回收、纯化PCR产物中790bp大小的条带,-20℃保存备用. 以PET-TNF-α为模板,用引物TNFα-1和TNFα-2进行PCR扩增. 15g·L-1琼脂糖凝胶电泳分离PCR产物,低熔点琼脂糖凝胶回收470bp大小的条带,WizardTM Minicolumn纯化. 循环参数为:94℃ 60s,58℃ 60s,72℃ 90s,共30个循环,72℃保温10min.

    1.2.3 sFv和TNF-α基因片段的克隆[22]和鉴定 sFv和TNF-α的PCR产物纯化后分别连入pGEM-T载体,连接反应体系为:PCR产物5μL,pGEM-T载体1μL, 10×连接反应缓冲液1μL,T4DNA连接酶1μL, 16℃连接反应16h. 连接产物分别命名为pGEM-sFv和pGEM-TNFα. 参照《分子克隆操作指南》制备JM109感受态宿主菌,冰浴条件下分别加入上述连接产物,冰浴30min, 42℃热休克90s后,迅速冰浴2min,加LB培养液800μL,37℃保温1h,涂于氨苄青霉素抗性的X-gal/LB平板进行蓝白筛选,37℃培养过夜. 分别随机挑取上述连接产物转化的10个白色菌落,扩大培养,提取质粒并分别用pGEM-T载体中外源基因插入位点两侧sacⅡ,pstⅠ双酶切鉴定,酶切产物于15g·L-1琼脂糖凝胶电泳,EB染色,紫外射仪上观察结果.择酶切鉴定符合的克隆作为阳性克隆,Qiagen20 TIP纯化质粒(按Qiagen公司试剂盒说明操作),用通用引物Dye Primer(M13RP1)(上游:AACAGCTATGACCATG,下游:TGACCGGCAGCAAAATG)进行双向测序.

    1.2.4 双功能抗体基因与GFP基因融合表达载体的构建和鉴定 pEGFP-N3质粒用SalⅠ和SacⅡ双酶切,15g·L-1琼脂糖凝胶电泳,低熔点琼脂糖凝胶回收并纯化4.7kb大小的线性化载体片段,pGEM-TNF质粒用SalⅠ和SacⅡ双酶切,15g·L-1琼脂糖凝胶电泳,低熔点琼脂糖凝胶回收470bp大小的TNF-α片段,回收TNF-α片段. 将纯化的TNF-α酶切片段5μL与线性化pEGFP-N3载体片段1μL于16℃连接反应16h,连接产物命名为pEGFP-TNF. 转化JM109感受态宿主菌,涂于卡那霉素抗性的LB平板上,37℃培养过夜. 随机挑取12个单菌落,扩大培养,小量提取质粒,用SalⅠ和SacⅡ双酶切鉴定,15g·L-1琼脂糖凝胶电泳,EB染色,紫外透射仪上观察结果. 选择酶切鉴定的pEGFP-TNF阳性克隆扩大培养,提取质粒,用EcoRⅠ和SalⅠ双酶切并回收5.2kb大小的线性化载体片段,pGEM-sFv用EcoRⅠ和SalⅠ双酶切并回收790bp大小的sFv片段,取载体片段1μL和sFv酶切片段5μL进行连接反应,连接产物命名为pEGFP-ST, 即为单链双功能抗体和GFP融合表达的真核表达载体. 将上述连接产物转化 JM109感受态宿主菌,涂于卡那霉素抗性的LB平板上,37℃培养过夜. 随机挑取12个单菌落,扩大培养,小量提取质粒,用EcoRⅠ和SacⅡ切割sFv-TNF-α片段及SalⅠ和SacⅡ切割TNF-α片段,分别进行双酶切鉴定,15g·L-1琼脂糖凝胶电泳,EB染色,紫外透射仪上观察结果.

    1.2.5 重组双功能抗体-GFP融合蛋白的真核表达活化重组pEGFP-ST宿主菌JM109单个菌落,接种于3mL LB培养液中培养过夜. Qiagen20 Tip纯化质粒,溶于30μL无菌水中,-20℃保存备用. 于转染前1d,用2.5g·L-1蛋白酶消化小鼠成纤维细胞NIH3T3,将6×105细胞接种于90mm培养皿中. 转染前4h换10mL含100mL·L-1小牛血清的DMEM培养液,置37℃,50mL·L-1 CO2孵箱培养. 严格按照磷酸钙转染试剂盒说明,将20μg纯化重组pEGFP-ST质粒DNA溶于无菌水中,总体积为438μL,加入2mol·L-1 CaCl2 62μL混匀,缓慢滴入2×HBS 0.5mL中. DNA-磷酸钙共沉淀物置室温30min,逐滴加至接种NIH3T3细胞的培养皿中,置37℃,50mL·L-1 CO2孵箱培养12h,换完全DMEM培养液继续培养12h~24h. 转染后20h,于倒置荧光显微镜下观察活细胞中GFP融合蛋白的表达.

    2 结果

    2.1 sFv和TNF-α基因的克隆和鉴定 纯化的sFv和TNF-α PCR产物分别与pGEM-T载体连接,转化感受态JM109大肠杆菌,均长出数10个克隆,分别随机挑取10个白色菌落,用pGEM-T载体中外源基因插入位点两侧的sacⅡ,pstⅠ双酶切,pGEM-sFv质粒切下590bp左右和200bp左右的2个片段(sFv基因序列中含有一个pstⅠ酶切位点,符合插入片段sFv的大小),pGEM-TNF-α质粒切下470bp左右的片段(符合插入片段TNF-α的大小). 将酶切鉴定过的阳性克隆测序,证实sFv的基因序列与已知序列一致,其5'端引入EcoRⅠ酶切位点及正确的60bp引导肽序列, 3'端引入SalⅠ酶切位点;TNF-α基因序列与文献报道一致,5'端引入SalⅠ酶切位点,3'端引入SacⅡ酶切

    位点.

    2.2 重组融合蛋白表达载体pEGFP-ST的构建和酶切鉴定 TNF-α片段与线性化的pEGFP-N3载体片段连接,连接产物转化JM109感受态菌,涂卡那霉素抗性平板培养长出数10个克隆,随机挑取的12个克隆均可用SalⅠ和SacⅡ双酶切下470bp左右的片段,符合插入片段TNF-α的大小. sFv片段与相同酶切的pEGFP-TNF-α载体大片段连接,连接产物转化JM109感受态菌,涂卡那霉素抗性平板培养长出数10个克隆, 随机挑取的12个克隆均可用EcoRⅠ和SalⅠ双酶切下790bp左右的片段,符合插入片段sFv的大小,进一步用EcoRⅠ和SacⅡ及SalⅠ和SacⅡ分别双酶切鉴定pEGFP-ST,分别切下1260bp左右及470bp左右的片段,符合sFv-TNF-α及TNF-α片段大小(图1),证明插入正确,从而获得重组融合蛋白表达载体pEGFP-ST.

    1 pEGFP-ST质粒的酶切鉴定结果.1. SalⅠ酶切空载体pEGFP-N3; 2. EcoRⅠ和SacⅡ酶切pEGFP-ST质粒(1260bp); 3. SalⅠ和SacⅡ酶切pEGFP-ST质粒(470bp); 4. EcoRⅠ和SalⅠ酶切pEGFP-ST质粒(790bp); 5. PCR markers

    2.3 细胞内融合蛋白表达 转染后20h倒置荧光显微镜下即可观察到经pEGFP-ST转染的部分细胞发出较强的绿色荧光,散在或成对出现,阳性细胞约为50%. 连续观察发光细胞逐渐增多,约72h达最高,有灶性发光细胞出现(图2).

    2 融合荧光蛋白在小鼠成纤维细胞NIH3T3内瞬时表达结果. ×200

    3 讨论

    双功能抗体是近几年发展起来的一类基因工程抗体,将抗体基因与一种或几种具有其他生物活性的效应分子(如毒素分子,细胞因子等)基因相连并融合表达,这种融合表达的蛋白不仅具有与抗原特异性结合活性,而且具有效应分子的特殊功能. 双功能基因工程抗体的代表是重组单链免疫毒素[23,24],它是将特异的sFv基因与毒素基因片段相连构建为重组基因,以表达sFv与毒素的融合蛋白. 1989年Chaudhary et al[25]先将抗卵巢癌的sFv与去除受体结合区的假单孢杆菌外毒素(PE40)基因融合表达单链免疫毒素,使荷瘤裸鼠体内的移植瘤完全消失[26]. 目前已有多种单链免疫毒素基因治疗计划进入临床试验,均采用PE40或切除PE40中部分氨基酸残基及定点突变几个氨基酸残基而获得的毒性更强的PE38和PE38KDEL活性片段,作为双功能抗体中的效应分子[27-29]. 但由于毒素均来源于细菌,且分子质量通常较大,具有较强的免疫原性,因而在临床应用中受到一定的限制[30,31].

    肿瘤的细胞因子基因治疗方法近年来倍受关注 ,将细胞因子基因转染至肿瘤细胞并注入体内,使肿瘤局部细胞因子浓度增高,有效地激发和加强局部及全身的免疫功能,避免因外源输入大量细胞因子而带来的一系列毒副作用. 自1989年Rosenberg[32]首次用逆转录病毒载体将TNF-α基因转入人TIL细胞,细胞因子基因治疗开始应用于临床. 常用的细胞因子有IL-2[32,33]、TNF-α[34-39]、IFN[33,40]等. 以细胞因子为效应分子而构建双功能抗体的报道较少[41],将细胞因子与抗体基因连接并融合表达,融合蛋白除了仍保留肿瘤靶向性外,尚具有细胞因子的功能,可使细胞因子特异性杀伤肿瘤细胞[42-44],增强抗肿瘤活性,并降低其毒副作用[45]. 1991年Hoogenboom et al[46]首次构建了抗体-TNF-α融合蛋白,将人TNF-α基因融合于肿瘤特异性人-鼠嵌合抗体CH2或CH3下游,并在骨髓瘤细胞中表达,对肿瘤细胞具有杀伤活性,但因分子质量大仍可被人体的免疫系统识别并产生人抗鼠抗体(human anti-mouse antibody,HAMA),因而限制了它的重复使用[47,48]. 单链抗体是由Fv抗体衍生而来的一类无Fc段的小分子抗体,将抗体重链可变区和轻链可变区通过一段连接肽(linker)连接而成[49,50],具有天然抗体的亲合力,而分子质量只有完整抗体的六分之一. 其最大特点是分子质量小、穿透力强、容易进入实体瘤周围的血液循环[51],体内应用具有较大的分布容积和较高的组织分布比例[52,53],是构建双功能抗体、双特异性抗体等多种新功能抗体分子的理想元件[54]. 同时由于免疫原性低,人体可以重复使用,目前尚未见人体试用产生HAMA报道,因而具有巨大的临床应用潜力[55-58].

    我室自1982年先后制备出10余株鼠源性抗肝癌单克隆抗体,并对其中特异性较强、亲和性较高的2株进行了基因工程改造[59-61],成功构建并高效原核表达了抗肝癌单链抗体. 在此基础上,我们尝试构建分子质量尽可能小,免疫原性尽可能弱的分泌型双功能抗体. 在sFv的5'端加上引导序列,3'端连上TNF-α基因,构成分泌型抗肝癌单链双功能抗体基因. 首先采用PCR方法将人工合成的抗体分泌信号肽序列加在抗肝癌sFv基因的N末端,再将sFv基因的C末端与人TNF-α基因连接构成分泌型单链双功能抗体基因,并将该重组基因克隆至带有GFP报告基因的真核表达载体中,观察重组基因在真核细胞中的瞬时表达.

    GFP来源于水母Aequorea victoria,由238个氨基酸组成,分子质量27ku. 与其他发光性报告分子不同,GFP不需要其他蛋白质、底物或共同因子的参与,紫外线激发即可产生明亮、稳定的绿色荧光,但只有完整的GFP才能激发出绿色荧光[62]. GFP无种系依赖性,且对宿主细胞无毒性,目前已作为一种新型的报告分子广泛应用于生命科学的众多领域,尤其在基因表达和定位等方面更具优越性[63,64]. 我们所用pEGFP-N3载体中EGFP为一种突变型GFP,其基因编码区含有190多个沉默碱基突变,具有更适合于在人类细胞中表达的开放读框,而且其mRNA翻译效率提高,GFP表达增强,所产生的荧光比野生型GFP增强35倍,因而更适用于检测各类细胞中GFP融合蛋白的表达情况. 我们将构建好的融合GFP表达载体通过磷酸钙介导转染小鼠成纤维细胞NIH3T3,20h后即可观察到转染的部分细胞发出较强的绿色荧光,散在或成对出现,阳性细胞约为50%,72h左右达最高,有灶性发光细胞出现.

    我们在NIH3T3细胞中成功地表达了融合荧光蛋白,证实构建的分泌型抗肝癌单链双功能抗体基因可以在真核细胞中有效地表达,为肝癌的免疫基因治疗研究提供了一种灵敏、直观、有效的方法,为今后进一步的研究奠定了基础.

    4 REFERENCES

    1 Jiang SM, Xu ZH, Zhang Y, Shi XM. Survival and malignant phenotype changes of human hepatoma SMMC-7721 cell line induced

    by cryopreservation at -50℃. China Natl J New Gastroenterol,1997;3:150-152

    2 Sun JJ, Zhou XD, Zhou G, Liu YK. Expression of intercellular adhesive molecule-1 in liver cancer tissues andliver cancer

    metastasis. World J Gastroenterol, 1998;4:202-205

    3 Wang XW, Xie H. Presence of Fas and Bcl-2 proteins in BEL-7404 human hepatoma cells. World J Gastroenterol,1998;4:540-543

    4 Bi WX, Xu SD, Zhang PH, Kong F. Antitumoral activity of low density lipoprotein-aclacinomycin complex in mice bearing H22

    tumor. World J Gastroenterol, 2000;6:140-142

    5 Liu YH, Zhou RL, Rui JA. Detection of hepatoma cells in peripheral blood of HCC patients by nested RT-PCR. 

    World J Gastroenterol, 1998;4:106-108

    6 Li L, Yan LN, Chen XL, Lu WS, Xie XD, Wu YT. Hepatic adenylate energy charge levels in patients with hepatoma after hepatic

    artery embolization. World J Gastroenterol, 1998;4:109-111

    7 Yang JM, Han DW, Xie CM, Liang QC, Zhao YC, Ma XH. Endotoxins enhance hepatocarcinogenesis induced by oral intake

    of thioacetamide in rats. World J Gastroenterol, 1998;4:128-132

    8 Cao GW, Gao J, Du P, Qi ZT, Kong XT. Construction of retroviral vectors to induce a strong expression of human class Ⅰ

    interferon gene in human hepatocellular carcinoma cells in vitro. China Natl J New Gastroenterol,1997;3:139-142

    9 Jiang SM, Xiao ZM, Xu ZH. Inhibitory activity of polysaccharide extracts from three kinds of edible fungi on proliferation of

    human hepatoma SMMC-7721 cell and mouse implanted S180 tumor. World J Gastroenterol, 1999;5:404-407

    10 Wu WY, Luo YJ, Cheng JH, Chang G, Liu WS, Li RX. Therapeutic effect of Curcuma aramatica oil infused via hepatic

    artery against transplanted hepatoma in rats. Huaren Xiaohua Zazhi, 1998;6:859-861

    11 Zhang JK, Sun JL, Chen HB, Zhou YQ. Ultrastructural comparison of apoptosis of human hepatoma cells and LAK cells. 

    Huaren Xiaohua Zazhi, 1998;6:877-879

    12 Chen JH, Wang ZM, Wu DC, Xu SD, Chen HW, Wen AD. Drug distribution and therapeutic effect of

    nanoparticle-associated adriamycin injected into hepatic artery of hepatoma-bearing rats. Huaren Xiaohua Zazhi,

    1998;6:1048-1051

    13 Chen HB, Zhang JK, Huang ZL, Sun JL, Zhou YQ. Effects of cytokines on dendritic cells against human hepatoma cell line. 

    Shijie Huaren Xiaohua Zazhi, 1999;7:191-193

    14 Zou QY, Li RB, Zheng PL, Yang LP, Chen YZ, Kong XP. Effect of embryo hepatic extracts on proliferation and differentiation

    of hepatoma BEL-7402 cells. Shijie Huaren Xiaohua Zazhi, 1999;7:243-245

    15 Wang YF, Wu XN, Wu Q, Zhang XQ, Chen XF, Zhou XH, Wen WQ, Chen MY. Biological significance of serum soluble tumor

    necrosis factor receptor Ⅰ in hepatoma patients. China Natl J New Gastroenterol, 1996;2:89-91

    16 Mi L, Chen ZN. Expression and analysis of corresponding antigen of McAbs against human hepatocellar carcinoma. 

    China Natl J New Gastroenterol, 1997;3:110

    17 Gong Y, Liu KD, Zhou G, Xue Q, Chen SL, Tang ZY. Tumor radioimmunoimaging of chimeric antibody in nude mice with

    hepatoma xenograft. World J Gastroenterol, 1998;4:7-9

    18 Du QY, Wang FS, Xu DP, Liu H, Lei ZY, Liu MX, Wang YD, Chen JM,Wu ZZ. Cytotoxic effects of CIK against hepatocellular

    carcinoma cells in vitro. Shijie Huaren Xiaohua Zazhi, 2000;8:863-866

    19 Chen ZN, Bian HJ, Jiang JL. Kecent progress inanti-hepatoma monoclonal antibody and its application. Huaren Xiaohua

    Zazhi, 1998;6:461-462

    20 Hu CM, Liu YF, Gao L, Chen SM, Chen NC, Gao H, Jin WL. Cloning and sequencing light chain variable region gene of a

    monoclonal antibody to HCC. Mianyixue Zazhi, 1996;10:27-29

    21 Hu CM, Liu YF, Gao L, Chen SM, Chen NC, Gao H, Jin WL. Cloning and sequencing heavy chain variable region gene of a

    monoclonal antibody to HCC. Mianyixue Zazhi, 1996;12:169-171

    22 Davis L, Kuchi M, Battey J. Basic methods in molecular biology. 2nd ed. East Norwalk: Appletion and Lange, 1994:15-300

    23 Wels W, Harwerth IM, Mueller M. Selective inhibition of tumor cell growth by a recombinent single chain antibody-toxin specific

    for the erbB-2 receptor. Cancer Res, 1992;29:1362-1367

    24 Reiter Y, Wright AF, Tonge DW. Recombinent single chain and disulfide-stabilized Fv-immunotoxins that cause complete regression

    of a human colon cancer xenograft in nude mice. Int J Cancer, 1996;67:113-123

    25 Chaudhary VK, Queen C, Junghans RP. A recombinant immunotoxin consisting of two antibody variable domains fused

    to pseudomonas exotoxin. Nature, 1989;339:394-397

    26 Chaudhary VK, Batra JK, Gallo MG. A rapid method of clining functional variable-regin antibody genes in Escherichia coli as single

    chain immunotoxins. Proc Natl Acad Sci USA, 1990;87:1066-1070

    27 Ara Pastan. Clinical trial with recombinent immunotoxin. Symposium of IBC, s Seventh Annual International Conference on

    Antibody Engineering. Dec.4-6 San Diego CA, USA. 1996

    28 Pai LH, Wittes R, Setser A. Treatment of advanced solid tumors with immunotoxin LMB-1: an antibody linked to

    Pseudomonas exotoxin. Nat Med, 1996;2:350-353

    29 Chowdhury PS, Viner JL, Beers R,Pastan R. Isolation of a high-affinity stable single-chain Fv specific for mesothelin

    from DNA-immunized mice by phage display and construction of a recombinant immunotoxin with anti-tumor activity. 

    Proc Natl Acad Sci USA, 1998;95:669-674

    30 Pai LH, FitzGerald DJ, Tepper M,Schacter B, Spitalny G, Pastan I. Inhibition of antibody response to pseudomonas exotoxin and

    an immunotoxin containing pseudomonas exotoxin by 15-deoxyspergualin in mice. Cancer Res, 1990;50:7750-7753

    31 Weiner LM, Odwyer J,Kitson J, Comis RL, Fraukel AE, Bauer RJ, Konrad MS, Groves ES. Phase Ⅰ evaluation an anti-breast

    carcinoma monoclonal antibody 60F9-recombinant rincin A chain immunmconjugate. Cancer Res, 1989;49:4062-4067

    32 Rosenberg SA, Lotze MT, Yang JC. Experience with the use of high-dose interleukin-2 in the treatment of 652 cancer

    patients. Ann Surg, 1989;210:474-485

    33 Xiang J. Targeting cytokines to tumors to induce active antitumor immune responses by recombinant fusion proteins. 

    Hum Antibodies, 1999;9:23-26

    34 Melani C, Figini D, Nicosia D, Luison E, Ramakrishna V, Casorati G, Parmiani G, Eshhar Z, Canevari S, Colombo MP. Tageting

    of interleukin 2 to human ovarian carcinoma by fusion with a single-chain Fv of antifolate receptor antibody. 

    Cancer Res, 1998;58:4146-4154

    35 Liang WJ, Zhang WD. Signal conducting mechanism of tumor necrosis factor inducing apoptosis. 

    Shijie Huaren Xiaohua Zazhi, 2000;8:329-331

    36 Zhou ZH, Huang YX. Progress in studies of tumor necrotic factor of carcinoma of large intestine. 

    Shijie Huaren Xiaohua Zazhi, 2000;8:700-701

    37 Ma CH, Sun WS, Cao YL, Zhang LN, Song J. Coinhibitory effect of recombinant tumor necrosis factor α and mutant interleukin-2

    on H7402. Huaren Xiaohua Zazhi, 1998;6:97-98

    38 Hoffmann M, Schmidt M, Wels W. Activation of EGF receptor family members suppresses the cytotoxic effects of tumor

    necrosis factor-alpha. Cancer Immunol Immunother, 1998;47:167-175

    39 Hoomgenboom HR, Rous JC, Volckaert G. Targeting of tumor necrosis factor to tumor cells: secretion by myeloma cells of

    genetically engineered antibody-tumor necrosis factor hybrid molecule. Biochem Biophys Acta,1991;1069:345-354

    40 Xiang J, Qi Y, Luo X, Liu E. Recombinant bifunctional molecule Fv-IFN-gamma possesses the anti-tumor Fv as well as the

    gamma interferon activities. Cancer Biother, 1993;8:327-337

    41 Sun ZW. Construction and expression and targeting studies of mouse scFv,humanized scFv and their fusion to TNF-alpha against

    HCC[D]. Xi'an: the Fourth Military University, 1998:2-4

    42 Liang WJ, Huang ZY, Ding YQ, Zhang WD. Lovo cell line apoptosis induced by cycloheximide combined with TNFα. 

    Shijie Huaren Xiaohua Zazhi, 1999;7:326-328

    43 Zhang GQ, Yu H, Zhou XQ, Liao D, Xie Q, Wang B. TNF-α induced apoptosis and necrosis of mice hepatocytes. 

    Shijie Huaren Xiaohua Zazhi, 2000;8:303-306

    44 Ci XL, Wang BE, Zhang SW, Zhang NN. Alterations of gastrointestinal motility and mucosal barrier in shock rat model induced

    by endotoxin plus TNF-α.Shijie Huaren Xiaohua Zazhi, 1999;7:510-512

    45 Harrison JS, Gill A, Hoare M. Stability of a single-chain Fv antibody fragment when exposd to a high shear environment combined

    with air-liquid interfaces. Biotechnol Bioeng, 1998;59:517-519

    46 Hoogenboom HR, Raus JC, Volckaert G. Construction and expression of antibody-tumor necrosis factor fusion protein. 

    Mol Immunol, 1991;28:1027-1037

    47 Khazaeli MB, Saleh MN, Liu T. Frequent anti-V-region immune response to mouse Pauza ME, Doumbia SO, B73.3

    monoclonal antibody. J Clin Immunol, 1992;12:116-120

    48 Chen KM. Study of antibody engineering. In: Zhu XH. Mianyixue Jinzhan. Sichuan Kexuejishu Chubanshe, 1995:238-248

    49 Polymenis M, Stollar BD. Critical binding site amino acids of an anti-z-DNA single-chain Fv molecules: role of heavy and light CDR3

    and relationship to autoantibody activity. J Immunol, 1994;152:5318-5329

    50 Pauza ME, Doumbia SO, Dennell CA. Construction and characterization of human CD7-specific single chain Fv immunotoxins. 

    J Immunol, 1997;158:3259-3269

    51 Yokota T, Milinic DE,Whitlow M. Rapid tumor penetration of a single chain Fv and comparison with other immunoglobulin

    forms. Cancer Res, 1992;52:3402-3408

    52 Votila M, Rouslathi E, Engval E. Two-site sandwich enzymeimmuno-assay with monoclonal antibodies to human alpha-fetoprotein. 

    J Immunol Methods, 1981;42:11-15

    53 Chen ZN, Liu YF, Sui YF. Effection of the monoclonal antibody HAb18 in diagnosis of human HCC. 

    Zhonghua Zhongliu Zazhi, 1992;1:9-12

    54 Hu Z, Sun Y, Garen A. Targeting tumor vasculature endothelial cells and tumor cells for immunotherapy of human melanoma in

    a mouse xenograft model. Proc Natl Acad Sci USA, 1999;96:8161-8166

    55 Pastan I. Clinical trials with recombinant immunotoxins. Symposium of IBC's Seventh Annual International Conference on

    Antibody Engineering. San Diego CA, USA, 1996:18-26

    56 Raag R, Whitlow M. Single chain Fvs. FASEB, 1995;9:73-80

    57 Danton G, Sekowski M, Spencer DIR, Murry A, Hughes ODM, Price MR. Production of a recombinant anti-MUC1 mucin

    scFv: propertiesand comparison with the parental monoclonal antibody. Antibody Engineering Ⅱ: 

    New Technology Application & Commercialization,1997;2:23-33

    58 Pavlinkova G, Beresford GW, Booth BJ, Batra SK, Colcher D. Pharmacokinetics and biodistribution of engineered single-chain

    antibody constructs of Mab CC49 in colon carcinoma xenografts. J Nucl Med, 1999;40:1536-1546

    59 Yang P, Liu YF, Hu CM. Cloning and sequencing variable region gene of a monoclonal antibody Hab27. Zhonghua Weishengwu

    He Mianyixue Zazhi, 1994;14:53-55

    60 Hu CM, Liu YF, Gao L, Chen SM, Chen NC, Gao H, Jin WL. Cloning and sequencing light chain variable region gene of a

    monoclonal antibody to HCC. Mianyixue Zazhi, 1996;10:27-29

    61 Hu CM, Liu YF, Gao L, Chen SM, Chen NC, Gao H, Jin WL. Cloning and sequencing heavy chain variable region gene of a

    monoclonal antibody to HCC. Mianyixue Zazhi, 1996;12:169-171

    62 Yang TT, Cheng LZ, Kain SR. Optimized coden usage and chromophore mutations provide enhanced sensitivity with the

    green fluorescent protein. Nucleic Acids Res, 1996;24:4592-4593

    63 He ZM, Li HP, Li BJ. Applications of green fluorescent protein in life science research. Heredity, 1998;20:43-46

    64 Plautz JD, Day RN, Dailey GM. Green fluorescent protein and its derivatives as versatile markers for gene expression in living

    drosophila Melanogaster, plant and mammalian cells. Gene, 1996;173:83-87, 百拇医药(程 虹1 刘彦仿1 张惠中2 沈万安2 张素珍1 )