当前位置: 首页 > 期刊 > 《数理医药学杂志》 > 2006年第2期
编号:10970160
公务员招聘录用方案的优化
http://www.100md.com 《数理医药学》 2006年第2期
公务,,公务员招聘录用;,上下界端点藕合;,0-1型整数规划;,多目标规划;,目标规划;,优先级算法,1引言和背景介绍,2模型假设,3模型建立,4模型求解,5结果分析
     摘 要: 我国公务员制度已实施多年,但公务员的录用分配却一直备受争议,卫生事业单位的职员制亦同样存在此类问题。究其原因,主要在于缺乏科学的评价指标及合理性解释。针对这种情况,依据公平合理、整体最优的根本原则,提出“上下界端点耦合”办法用于等级量化处理,并将01型整数规划和多目标规划及其解法原理结合起来,构造多项评价指标,借助LINGO软件依次逐级优化,从而建立起解决这类问题的一般模型。

    关键词: 公务员招聘录用; 上下界端点藕合; 0-1型整数规划; 多目标规划; 目标规划; 优先级算法

     1 引言和背景介绍

    公务员招聘历来备受关注。1993年10月1号,国务院颁布的《国家公务员暂行条例》规定:“国家行政机关录用担任主任科员以下的非领导职务的国家公务员,采用公开考试、严格考核的办法,按照德才兼备的标准择优录用”。目前,我国招聘公务员的程序一般分三步进行:公开考试(笔试)、面试考核、择优录取。如何将笔试和面试成绩结合起来,将单位需求和个人特长、个人志愿结合起来,同时考虑单位基本情况和个人综合成绩来确定一种既使应聘人员得到合理分配和使用,又有利于发挥个人特长和能力的分配方案是整个招聘问题的核心。

    一个应聘人员和一个部门的录用关系有且只有两种:要么被录用,要么不被录用。据此,由01型整数规划的原理[1],我们引入01变量xij作决策变量来表示某应聘人员和某部门间的录用关系:xij= 1 第i个人分配到第j个部门 0 第i个人不分配到第j个部门由xij组成的决策变量矩阵X不仅全面反映了各应聘人员和各部门间的录用关系,并有一些自身性质:∑n[]j=1xij=1 i=1,2,3,…,m(1)ν≤∑n[]j=1xij≤υ=1 j=1,2,3,…,m(2)其中,m、n分别是录用人数和用人部门数。式(1)表示一个人只能被分配到一个部门,式(2)表示每个部门的录用人数限制(ν、υ为常数)。这样,整个分配方案的确定就转化成求解合适的决策变量矩阵X。

    从上述分析可以发现,公务员招聘的实质就是一个指派问题[1]。所不同的是,指派问题是单目标的,而公务员招聘显然不可能只用一个指标来优化。为了让方案尽可能的科学合理,我们构造了6项评价指标(目标),运用多目标规划的原理[3]进行优化。由于在方案的合理性评价中,各项指标的重要性不一样 ......

您现在查看是摘要页,全文长 9236 字符