当前位置: 首页 > 期刊 > 《百科知识》 > 2009年第1期 > 正文
编号:12751661
自然界中的“纳米高手”(1)
http://www.100md.com 2009年1月1日 百科知识2009年第1期
     纳米是一个长度单位,指的是1米的10亿分之一。纳米技术,则是在纳米尺度(1~1000纳米之间)上研究物质的特性和相互作用,以及利用这些特性的技术。在纳米技术中,纳米材料是主要的研究对象与基础。

    事实上,纳米技术并不神秘,也不是人类的专利。早在宇宙诞生之初,纳米材料和纳米技术就已经存在了。在地球的漫长演化过程中,自然界的生物,从亭亭玉立的荷花、丑陋的蜘蛛,到诡异的海蛇尾,从飞舞的蜜蜂、水面的水黾,到海中的贝壳,从绚丽的蝴蝶、巴掌大的壁虎,到显微镜才能看得到的细菌……它们个个都是身怀多项纳米技术的高手。这些动植物们通过精湛的纳米技艺,或赖以糊口,或用以御敌,一代代,在大自然中顽强地生存下来,不仅丰富了我们周围的世界,而且给现代的纳米科技工作者带来了无数灵感和启示。

    洁身自好的莲花

    一提到莲花,人们很自然地就会联想到荷叶上滚动的露珠,以及其出淤泥而不染的高尚品格。

    20世纪70年代,德国波恩大学的植物学家巴特洛特在研究植物叶面时发现,光滑的叶子表面有灰尘,要先清洗才能在显微镜下观察,而莲叶等叶面却总是干干净净。他们利用人造的灰尘粒子污染玉兰、林山毛榉、莲花、芋、甘蓝等8种植物的叶面,然后用人造雨清洗2分钟,最后将叶面倾斜15°使雨滴滑落,观察叶面灰尘粒子残留的状况。实验发现,有些植物叶面残留的污染物多达40%以上;而莲花等植物叶面的污染物残留比例皆小于5%。

    这就是所谓的莲花效应。

    那么,什么原因导致了这种莲花效应呢?莲花效应又能给植物本身带来哪些好处呢7,现代电子显微镜技术可以给出正确的答案。

    通过电子显微镜,我们可以观察到莲叶表面存在着非常复杂的多重纳米和微米级的超微结构。荷叶表面上有一些微小的蜡质颗粒,并且覆盖着无数尺寸约10个微米的突包,每个突包的表面又布满了直径仅为几百纳米的更细的绒毛。在突包间的凹陷部分充满着空气,这样就紧贴叶面形成一层极薄、只有纳米级厚的空气层,从而使得在尺寸上远大于这种结构的灰尘、雨水等落在叶面上后,不会大范围直接接触叶面,而要隔着一层极薄的空气,并且其能接触的点也只是叶面上若干个凸起的点。

    这是自然界中生物长期进化的结果,正是这种特殊的纳米结构,使得荷叶表面不沾水滴,可以保持清洁:当荷叶上有水时,水会在自身表面张力的作用下形成球状。风吹动水珠在叶面上滚动时,水珠可以沾起叶面上的灰尘,并从上面高速滑落,从而使得莲叶能够更好地进行光合作用。

    研究表明,这种具有自洁效应的表面超微纳米结构形貌,不仅存在于荷叶中,也普遍存在于其他植物中。某些动物的皮毛中也存在这种结构。

    这种特性可以应用在玻璃上或是战机的雷达上,例如:经过纳米处理的玻璃本身也可以具有自洁效果。还有企业利用纳米技术处理涂料,涂上此涂料的物体因而也拥有了自洁效果。也许在未来的世界中,我们周围将不断出现不会脏的地板、墙壁,和没有灰尘的无线电用品。

    飞檐走壁的壁虎

    壁虎可以在任何墙面上爬行,反贴在天花板上,甚至用一只脚在天花板上倒挂。它依靠的就是纳米技术。

    过去,人们以为壁虎飞檐走壁靠的是脚掌上的神奇吸盘,凭借着“吸力”,它们才能够让身体自由漫步在任意一个三维空间内。但事实并非人们想像的那样简单。

    专家说,“壁虎漫步”靠的不是吸盘,而是脚趾上数以万计的细小刚毛。刚毛根部有几十微米粗,顶端分成很多更细更弯的绒毛,每根绒毛的直径仅几百纳米,其末梢延展成扁平形。此种精细结构,使得壁虎以几纳米的距离大面积地贴近墙面。尽管这些绒毛很纤弱,但足以使所谓的范德华键(有些物质的分子具有极性,其中分子的一部分带有正电荷,而分子的另一部分带有负电荷,一个分子的正电荷部位和另一分子的负电荷部位间,以微弱静电引力相互吸引,使两者结合在一起,称为范德华键或分子键)发挥作用,为壁虎提供数百万个的附着点,从而支撑其体重。这种附着力可通过“剥落”轻易打破,就像撕开胶带一样,因此壁虎能够自由穿过天花板。

    在现实生活中,专家们试图据此制造出神奇的纳米材料,并将其广泛地应用到我们的生活中。比如,我们可以制造出抓地更牢的运动鞋,可以制作雨雪环境中不再打滑的汽车轮胎。而在影视剧拍摄中,演员们可以告别工作室里的电脑,真正在摩天大楼的玻璃幕墙上一展身手。据此开发出的空间探测用攀爬型机器人,无论在什么恶劣的条件下都可以在太空飞行器的外表面行走,给飞行器进行“体检”。

    贝类——娴熟的黏合高手

    这里所指的就是普通的贝类,也即我们与蔬菜一起烹饪、经常可以吃到的那种贝类,它们堪称纳米黏合技术的高手。

    当贝类想把自己贴在一块岩石上时,就会打开贝壳,把触角贴到岩石上,它将触角拱成一个吸盘,然后通过细管向低压区注射无数条黏液和胶束:释放出强力水下胶粘剂。这些黏液和胶束瞬间形成泡沫,起到小垫子的作用。贝类通过弹性足丝停泊在这个“减震器”上。这样,它们就可以随波起伏,而不至于受伤。这种牢固的胶粘效果就来自黏液和岩石纳米尺度下分子之间的相互作用。

    依据该项研究,专家们设想未来也许可以研发出一种医用防水生物胶。此类粘胶不会侵害人体细胞或引发人体免疫反应,具有防水功能,能够成为黏接断裂骨骼和缝合软组织的理想材料,也适用于在潮湿的口腔中修复牙齿损伤。

    眼观六路的海蛇尾

    海蛇尾是一种带甲壳的碟形海底生物,酷似海星。它有5个触角,没有眼睛,尽管如此,海蛇尾却能够敏捷地感知远处潜在的天敌,并及时将触角缩进壳里。海蛇尾这种灵敏的感觉,长期以来,一直令生物学家迷惑不解。

    近来,这个问题终于在其甲壳上找到了答案:海蛇尾身上长满了“眼”,即数以万计的完美的微型凸透镜。这样一来,整个毛茸茸的身体就构成了其眼观六路的眼睛。

    研究还表明,一只海蛇尾身上的这种透镜数日大约有5万~10万,它们都是由碳酸钙的纳米晶体组成。这种完美的光敏感微型透镜系统,是海蛇尾在生长过程中,身体表面纳米结晶化的结果。为了防止不必要的色边,结晶化过程中,透镜内还吸收了适量的镁,既可以帮助海蛇尾更有效地过滤光线,又可以校正透镜的“球面像差”,进而提高发现天敌的效率。

    自从发现海蛇尾的这种特性以来,科学家一直在研究将其运用于科技的潜力。比如,利用海蛇尾的特性制造出新型的光学仪器,或是为将来的通讯网络发展提供线索。现在世界上的大多数光纤维用于通讯业, (沈海军)
1 2下一页