通过加权基因共表达网络和LASSO分析识别儿童呼吸道合胞病毒的诊断基因
摘 要 目的:运用生物信息学方法挖掘儿童呼吸道合胞病毒(RSV)的诊断标志物,为RSV的靶向治疗提供依据。方法:从GEO中获得RSV的基因表达数据集。运用差异表达分析、免疫浸润分析、WGCNA和LASSO确定RSV的关键生物标志物。同时,绘制ROC曲线对关键基因的诊断性能进行评估。结果:共识别出592个差异基因和10种差异浸润的免疫细胞,例如中性粒细胞。WGCNA和LASSO分析筛选出7个关键的生物标志物,包括ADM、LTF、UBE2J1、PDK4、S100A4、BST1、CAMP。此外,ROC曲线分析发现这些基因具有较高的诊断价值。结论:筛选的7个基因可作为RSV的诊断生物标志物。关键词 呼吸道合胞病毒 诊断基因 中性粒细胞 加权基因共表达网络分析
中图分类号:R446.9; R725.1 文献标志码:A 文章编号:1006-1533(2024)19-0063-09
引用本文 董海丽, 王国胜, 谷双龙, 等. 通过加权基因共表达网络和LASSO分析识别儿童呼吸道合胞病毒的诊断基因[J]. 上海医药, 2024, 45(19): 63-71.
Identification of diagnostic genes related to respiratory syncytial virus in children based on WGCNA and LASSO algorithms
DONG Haili, WANG Guosheng, GU Shuanglong, SONG Nanping
(Department of Pediatrics, Zhengzhou 460 Hospital, Zhengzhou 450000, China)
ABSTRACT Objective: The diagnostic biomarkers of respiratory syncytial virus (RSV) in children were explored by bioinformatics analysis to provide basis for targeted therapy of RSV. Methods: Gene expression profiles of RSV were obtained from the GEO database. Differential expression analysis, immune infiltration analysis, WGCNA and LASSO were applied to identify the key biomarkers of RSV. Meanwhile ......
您现在查看是摘要页,全文长 14973 字符。