基于自适应向量机检测睡眠呼吸暂停综合征的最优特征组合筛选(1)
[摘要] 基于自适应向量机监测睡眠呼吸暂停综合征(SAS)时可提取出的特征参数较多,筛选这些特征参数中与SAS相关度较大的组合,可以有效降低算法的计算量,具有重要的实践意义。本文基于V2导联心电信号,首先对ECG信号进行去噪和R波提取,得到心率变异性信号(HRV)和心电呼吸导出信号,并从中提取出时域频域特征共22组,利用特征参数与SAS的相关系数对特征参数筛选后进行支持向量机(SVM)分类。对比22组特征参数与筛选后的15组特征参数分类结果,准确率降低不足0.5%,但计算复杂度大大降低,可作为对临床长时间心电图检测的扩展,减少对专业医护人员的依赖,具有良好的经济性和普及性。[关键词] 睡眠呼吸暂停综合征;相关系数;支持向量机
[中图分类号] R563.8 [文献标识码] A [文章编号] 1673-7210(2019)04(c)-0165-04
Screening best combination of features based on adaptive vector machine for detecting sleep apnea syndrome
WANG Xinkang1 LIU Lei2 WANG Lianghong2 FAN Minghui2
1.Department of ECG Diagnosis ......
您现在查看是摘要页,全文长 3597 字符。