当前位置: 首页 > 期刊 > 《食品安全导刊》 > 2019年第2期
编号:13325673
1检测方法研究> 食品中黄曲霉毒素B1检测方法研究(1)
http://www.100md.com 2019年2月1日 《食品安全导刊》 2019年第2期
     摘 要:黄曲霉毒素(AF)是广泛存在于自然界中的真菌毒素,而在所有的真菌毒素中,AFB1的毒性、致癌性较大,其能阻止蛋白、酶和凝血因子合成,又能抑制葡萄糖、脂肪酸、代谢产物的合成,从而引起免疫抑制、脂肪退化和DNA损伤。AFB1的检测方法大致分为化学分析法、生物鉴定法、仪器分析法三大类,本文主要对运用较为广泛的TLC(薄层层析)、HPLC(高效液相色谱)、GICA(胶体金标免疫层析分析法)、ELISA(酶联免疫法)检测方法进行论述。

    关键词:黄曲霉毒素 毒性 致癌性 检测方法

    1 黄曲霉毒素概况及其发病机理

    黄曲霉毒素(AF)主要成分是由黄曲霉(Aspergillus flavus)和寄生曲霉(Aspergillus parasiticus)产生的有毒性的次生代谢产物,属于真菌毒素,广泛存在于自然界中[1,2]。黄曲霉毒素由大约18种化学结构相似的衍生物组成,包括B和G两大类,植物性食物中产生B1、B2、G1和G2[3],而乳或乳制品(包括乳酪、奶粉等)中产生M1、M2。黄曲霉毒素B1在植物性食物衍生组中毒性最强,其慢性毒性甚至可诱发肝癌。
, 百拇医药
    AF需要在机体内代谢活化才能表现出毒性。首先,细胞内的多功能氧化酶将AF催化成环氧化物;然后,环氧化物与大分子反应生成DNA、RNA、蛋白质和类脂的结合物,并表现出两种毒性——急性毒性和慢性毒性,分别表现为AF与蛋白质(包括酶)、类脂的反应可导致细胞的死亡,与核酸的反应可导致突变。研究表明,在所有真菌毒素中,AFB1的毒性、致癌性最大——能阻止蛋白、酶和凝血因子合成,又能抑制葡萄糖、脂肪酸、代谢产物的合成,从而导致免疫抑制、脂肪退化和DNA损伤[4]。

    AFB1在动物体中的急性毒性如表1所示,其毒性因动物年龄、种类、性别而异[5]。一般来说,幼年动物对AFB1的敏感性要大于成年动物,雄性动物的敏感性要大于雌性动物。研究表明,当猪饲料中AFB1的含量达到810ppm时,饲料的转化率下降,猪的体重也明显下降,甚至会出现死亡,解剖发现其肝脏出现退行性变化,肝细胞大面积坏死。AF除了会对大鼠引起肝癌外,还会使大鼠患上胃癌、结肠癌和肾脏上皮癌[6]。

    人體摄入被AF污染的食物后经消化道吸收,其大部分积累在肝脏,少部分分布在肾脏、血液和肌肉中,在机体内通过羟基化、去甲基化和环氧化等作用形成代谢产物使机体致癌、致突变。研究表明,AF的LD50(半数动物致死量)为0.249mg/kg,毒性比氰化钾高10倍[7]。AFB1在人体内的危害表现为急性毒性和慢性毒性,急性毒性在人体内会出现肝实质细胞坏死、胆管上皮细胞增生、肝脂肪浸润及肝出血等[8],前期症状为发烧、呕吐、黄疸,继而出现腹水和下肢浮肿,最终可导致死亡。AFB1是一种能导致人体遗传物质发生变化的致突变化合物,其在人体的代谢产物有致突变作用,包括AFB1-2,3-环氧化物、AFM1和AFP1等,其中AFB1-2,3-环氧化物的第2个碳与DNA的鸟嘌呤酮基结合形成AFB1-DNA加合物,去嘌呤反应通过形成AFB1-N7-鸟嘌呤,使DNA分子产生无嘌呤位置的缺口,从而造成DNA损伤,进而可能导致癌变。致癌性表现为AFB1可引起细胞错误地修复DNA,从而导致严重的DNA诱变,并进一步抑制DNA和RNA的合成,最终抑制蛋白质的合成及基因变化积累[9,10]。目前,科学家已证实p53基因是癌症的抑制基因,很多人可能在幼年时就受到AFB1的攻击,加之人体内特定基因的缺失或变异引起p53基因突变,最终导致机体发生癌变[11]。
, 百拇医药
    由于AFB1具有危害性和广泛性,人们需要有效的检测方法测定其在食品中的含量,确保对人和家畜的伤害降到最低。目前检测AFB1的方法很多,但主要分为三大类:化学分析法、生物鉴定法、仪器分析法[12-14],其中有4种方法的运用较为广泛,即TLC(薄层层析)、HPLC(高效液相色谱)、GICA(胶体金标免疫层析分析法)、ELISA(酶联免疫法)。

    2 食品中AFB1的几种检测方法

    2.1 薄层层析法(TLC)

    AF是低分子量极性化合物,它的特点是可以吸收紫外光,利用这一特点衍生了多种测定AF的方法,而薄层层析方法是最早被运用的方法。薄层层析法(TLC)同时具有定性和定量的分析功能,所以被美国官方确定为标准方法,我国也在国家标准中将其确立为仲裁法[15]。TLC的原理是利用AFB1在365nm紫外波长下会发出蓝色荧光的特点,再经过固相层分离后,对其荧光的强度进行测定,并且与标准液相比,最终得出结果。这种方法不需要专门的仪器设备,成本低,实验室大都能完成对AF的测定。但是,最原始的薄层分析由于分辨率不稳定,受周围因素的影响很大,检测结果不稳定,差异性较大。同时,该方法的工作量比较复杂,耗费时间较长,且在做定量分析时精确度较低。现如今,随着科技的迅速发展,出现了很多固相吸附材料,可以使薄层层析的准确度得到提升,其精确度甚至可以与高效液相色谱相较量。张慧丽等通过用黄曲霉菌株接种18种花生仁,利用半定量薄层层析法和精确定量高效液相色谱法检测到的AF质量浓度确定花生的抗AF合成的能力,鉴定出2个高抗黄曲霉感染和AF质量浓度低的花生品种[16]。
, http://www.100md.com
    2.2 高效液相色谱(HPLC)

    1986年,AOAC International首次将高效液相色谱法(HPLC)作为检测乳液中AFM1及AFM2公认的方法[17],也是国内外研究机构认为检测AF最权威的一种方法,其具有分析自动化的潜力,且具备灵敏度高、精确度高等优点[18]。但是,HPLC对样品的纯度要求很高,必要时需将原料进行衍生才能使用这种方法。经长期研究实践,研究人员总结出一些使用该方法的技巧。AF的荧光特性受流动相中的液体影响较大,只能检测到1~2种AF,有的甚至会发生荧光猝灭现象,所以在测定时要同时运用紫外检测器和荧光检测器才能将试样中的AF检测完全。此外,国内外学者也对高效液相色谱法测定AF进行了系统的研究。陆勤佳等人基于高效液相色谱荧光法设计并完成了一套由分离系统、恒温控制系统、荧光检测器、主控板和人机交互界面组成的AF检测系统,并且经过测试,表明该AF检测系统具有良好的稳定性——结构紧凑、检测速度快且灵敏度高,能用于AF的实际检测[19]。王勇建立AFB1的柱前衍生-高效液相色谱(HPLC)检测方法,该方法具有良好的准确性、灵敏性和重复性,可对组织样品中AFB1残留量进行快速准确分析,为AFB1在食品中的快速检测奠定基础[20]。Beaver R、Klaus R等研究发现,在柱后衍生时向其中加入碘,会增强AFB1的荧光度——是之前的25倍,该方法已经被运用到花生制品AFB1的含量检测中[21,22];该方法需要使用的仪器非常昂贵,一般在进出口检测实验室使用。罗朝权等为建立一种快速检测动物类药材污染AFB1(AFB1)和AFG1(AFG1)的液质联用法,并用于水蛭等6种动物类中药材污染情况的分析,结果表明,土鳖虫等动物类药材受AF污染的情况较为严重[23]。, 百拇医药(张宏博 靳志敏 高智慧 郑玉山)
1 2 3下一页