元分析常见问题及解决方法
孔博丹?许惠芳?孔博鉴摘要:元分析是心理学研究中的重要手段。国内元分析常出现发表性偏倚缺失以及误用随机效应模型和固定效应模型的问题。本文通过整理相关文献,指出研究者应当遵循漏斗图以及相关统计的指标研究、识别并处理发表性偏倚,遵循假设以及异质性检验的结果来选取适合的模型合并单个研究指标。
关键词:元分析;发表性偏倚;随机效应模型;固定效应模型;异质性检验
一、元分析常见问题
元分析是对已有的同类课题的研究进行综合评价、分析,整合独立研究的成果,以获得普遍性、概括性结论的方法。元分析的优势有两点,一是将哲学中的批判思想转变成为可操作的方法,二是填补了定量分析方法与定性分析方法的鸿沟。在心理学界,元分析被越来越多地应用于分析某领域研究的趋势,整合不统一的研究结论,探寻新的研究方向。近年来,国内介绍、应用元分析的论文逐渐增多。但是,同国外的元分析论文相比,国内元分析论文普遍存在两方面的问题:一是发表性偏倚过程的缺失,发表性偏倚在元分析过程中是一个较为重要的步骤,但是国内的元分析文献中较少涉及此过程;二是随机效应模型和固定效应模型选择标准误用。上述两个问题如果处理不好均有可能影响元分析结果的准确性,甚至有可能得到相反的结果。为此,本研究整理分析有关这两个问题的文献,期待通过对文献的梳理,解决上述两个问题。
二、发表性偏倚的识别及解决办法
(一)如何识别发表性偏倚
发表性偏倚是指由于研究者不能完全占有相关领域的资料而造成元分析结果存在偏倚。发表性偏倚常被称为“文件柜问题”,缘其类似于研究者没有将结果不显著的文献用于分析,就像把它们放在文件柜里(Rosenthal,1979)[1]。造成偏倚的原因有二:一是元分析者很难收集到相关研究领域的所有文献,很多没有公开发表的文献是不易获取的;二是已经发表的文献中,证实了研究假设的居多,而有悖于研究假设的很少,同时元分析者也易将结果显著的研究纳入元分析中(Rosenthal,2001) [2]。偏倚一般体现为结果偏向于研究者的原假设。常用的评定方法有两类:直观的观察法和统计的方法。
直观的观察法常用漏斗图法(funnel plot),它由Light和Pillemer于1984年提出。漏斗图将各个研究表示为直角坐标系里的散点图。一般来说,X轴是效应量值,Y轴是样本量。各个研究表示为坐标系内的点。漏斗图的理论依据是样本量越大,其对效应量值的估计也就越准确,样本量越小,其误差也越大。具体表现为漏斗图里样本量大的研究集中在图的上方,平均效应量值周围;样本量小的研究散落在图的底部 ......
您现在查看是摘要页,全文长 18951 字符。