濠电姷鏁告慨鐑姐€傞挊澹╋綁宕ㄩ弶鎴狅紱闂佽宕樺▔娑氭閵堝憘鏃堟晲閸涱厽娈查梺绋款儏椤戝寮婚敐鍛傜喎鈻庨幆褎顔勯柡澶嗘櫆缁诲牆顫忛搹瑙勫磯闁靛ǹ鍎查悵銏ゆ⒑閻熸澘娈╅柟鍑ゆ嫹
闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊椤掍礁鍓銈嗗姧缁犳垿鐛姀銈嗙厓閺夌偞澹嗛崝宥嗐亜閺傚灝顏紒杈ㄦ崌瀹曟帒顫濋钘変壕闁告縿鍎抽惌娆撴煕閺囥劌鐏犵紒鐙€鍨堕弻銊╂偆閸屾稑顏�/婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾剧粯绻涢幋鏃€鍤嶉柛銉墻閺佸洭鏌曡箛鏇炐ユい锔诲櫍閹宕楁径濠佸闂備礁鎲″ú锕傚磻婢舵劕鏄ラ柣鎰劋閳锋垿鎮归幁鎺戝婵炲懏鍔欓弻鐔煎礄閵堝棗顏�/缂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕闁芥ɑ绻傞湁闁绘ê妯婇崕蹇涙煕閵娿儱鈧悂婀侀梺绋跨箰閸氬绱為幋锔界厱闁靛ǹ鍎遍埀顒€娼″濠氬Ω閳哄倸浜為梺绋挎湰缁嬫垿顢旈敓锟�
闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈡晜閽樺缃曢梻濠庡亜濞诧妇绮欓幋鐘电幓婵°倕鎳庣粻瑙勭箾閿濆骸澧┑鈥炽偢閺屾盯濡搁妷銉㈠亾閸ф钃熼柕濞炬櫆閸嬪棝鏌涚仦鍓р槈妞ゅ骏鎷�: 闂傚倸鍊峰ù鍥敋瑜嶉湁闁绘垼妫勯弸浣糕攽閻樺疇澹樼痪鎹愵嚙閳规垿鎮╅崣澶嬫倷缂備焦鍔栭〃濠囧蓟閿熺姴鐐婇柍杞扮劍閻忎線姊哄畷鍥ㄥ殌缂佸鎸抽崺鐐哄箣閿旇棄浜归梺鍛婄懃椤︿即骞冨▎蹇婃斀闁宠棄妫楁禍婵嬫煥閺囨ê鐏茬€殿喛顕ч埥澶愬閻樻牓鍔戦弻鏇$疀婵犲倸鈷夐梺缁樼箖閻楃娀骞冨畡鎵冲牚闁告劑鍔庨惄搴ㄦ⒑閻熸澘娈╅柟鍑ゆ嫹 闂傚倸鍊搁崐鎼佸磹妞嬪孩顐芥慨姗嗗厳缂傛岸鏌ゆ慨鎰偓鏍偓姘煼閺岋綁寮崒姘粯缂備讲鍋撳鑸靛姇缁犺绻涢敐搴″濠碘€炽偢閺屾稑顫濋鍌溞ㄥΔ鐘靛仦閻楁洝褰佸銈嗗坊閸嬫捇鏌h箛锝呮珝闁哄苯绉剁槐鎺懳熼懡銈庢Ч闂備礁鎼悮顐﹀礉閹存繍鍤曟い鎺戝閸ㄥ倹銇勯弮鍥舵綈閻庡灚鐗楃换婵嬫偨闂堟稐鎴烽梺闈涙椤戝鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐宄懊归崶褏鏆﹂柛顭戝亝閸欏繒鈧箍鍎遍ˇ顖滅矆閸愨斂浜滄い鎾跺枎閻忥綁鏌i妷顔婚偗婵﹦绮幏鍛村川婵犲啫鍓垫俊鐐€栭崹鐢稿磹閸喚鏆︽繝濠傚暊閺€浠嬫煕椤愮姴鐏柣鎾存尰缁绘繈濮€閿濆棛銆愭繝銏f硾濞差厼鐣烽幋锕€绠荤紓浣股戝▍婊堟煙閼测晞藟闁逞屽墮绾绢參顢欓幋鐘电=闁稿本鐟﹂ˇ椋庣磼闊彃鈧繈鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳碍淇婇悙顏勨偓鏍垂閻㈢ǹ鐤柡澶嬪灩閺嗭箓鏌¢崶銉ョ仾闁绘帟鍋愰埀顒€绠嶉崕閬嶅箠閹扮増鍋╂繛宸簼閸婂灚顨ラ悙鑼虎闁告梹纰嶉妵鍕晜鐠囪尙浠梺姹囧労娴滐綁藝瑜版帗鐓涢悘鐐插⒔閵嗘帒霉閻欏懐鐣甸柟顔界懇椤㈡宕掑☉鍗炴倠缂傚倸鍊搁崐鐑芥嚄閼搁潧鍨旈柟缁㈠枛缁狀垶鏌ㄩ悤鍌涘 闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柛顐f磸閳ь兛鐒︾换婵嬪礋椤撶媭妲卞┑鐐存綑閸氬岣垮▎鎴濐棜闁秆勵殕閳锋垶銇勯幒鍡椾壕缂備礁顦伴幐鍐茬暦瑜版帒纾奸柣鎰嚟閸樻悂姊洪崨濠傚闁告柨瀛╅弲璺衡槈閵忥紕鍘介梺鍦劋濞诧箓宕靛▎鎰╀簻妞ゆ挴鍓濈涵鍫曟煙閻熸澘顏柟鐓庣秺瀹曠兘顢樺┑鍫㈩槰婵犵數濮烽。顔炬閺囥垹纾块柟杈剧畱缁狀垶鏌ㄩ悤鍌涘 闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柛鎾茬劍閸忔粓鏌涢锝嗙闁汇倝绠栭弻锝夊箛椤撶姰鍋為梺鍝勵儏缁夊綊寮婚妸銉㈡斀闁糕檧鏅滆倴闂備線鈧偛鑻崢鍝ョ磼閼镐絻澹橀柣锝囧厴婵℃悂鍩℃担娲崜闂備胶鎳撻顓熷垔椤撶倣锝吤洪鍛嫼闂佺厧顫曢崐鏇炵摥婵犵數鍋涢惇浼村磹閺囷紕浜藉┑鐘垫暩婵潙煤閵堝洨鐭嗗鑸靛姈閻撱儵鏌i弴鐐测偓鍦偓姘炬嫹 濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姳鍗抽幃褰掑炊瑜嶉弬鈧紓鍌氬€圭喊宥囨崲濞戙垹骞㈡俊顖濇娴煎洦绻濆▓鍨灍濠电偛锕濠氬即閻旈绐為梺绯曞墲钃遍柣婵囨⒒缁辨挻鎷呴幓鎺嶅闁诲骸鍘滈崑鎾绘煕閺囥劌澧ù鐙€鍨跺娲箹閻愭彃濡ч梺鍛婃磸閸斿秹鎮橀崱娑欌拻濞达絽鎲¢崯鐐翠繆椤愶絽鐏存鐐茬箻閺佹捇鏁撻敓锟� 闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊椤掆偓绾惧鏌熼幍顔碱暭闁稿鍊濋弻锟犲礃閵娧冾暫闂佹悶鍔岄崐鎼佹箒闂佺ǹ绻愰崥瀣磿濡ゅ懏鐓涘ù锝呮啞椤ャ垽鏌$仦璇插闁诡喓鍊濆畷鎺戔槈濮楀棔绱� 闂傚倸鍊搁崐宄懊归崶顒夋晪鐟滃繘鍩€椤掍胶鈻撻柡鍛Т閻e嘲螣閼姐倗鐦堝┑顔斤供閸樻悂骞愰崘顔解拺闁告稑锕ユ径鍕煕閹炬潙鍝虹€规洩缍€缁犳稑鈽夊▎鎴濆汲闂備胶绮ú鏍磹閸︻厸鍋撳鐐 濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姴缍婇弻宥夊传閸曨剙娅i梺绋胯閸旀垿寮婚敐澶婄鐎规洖娲ㄥΣ蹇涙⒑閼姐倕鏋戦悗姘墦瀵噣宕煎┑鍡欑崺婵$偑鍊栭幐鐐垔椤撶倣锝吤洪鍛嫼闂佺厧顫曢崐鏇炵摥婵犵數鍋涢惇浼村磹閺囷紕浜藉┑鐘垫暩婵潙煤閵堝洨鐭嗗鑸靛姈閻撱儵鏌i弴鐐测偓鍦偓姘炬嫹 闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偛顦甸弫鎾绘偐椤旂懓浜鹃柛鎰靛幘閻も偓濠电偞鍨跺玻鍧楁晬濞戙垺鈷戠紒顖涙礀婢ц尙绱掔€n偄鐏寸€殿喖鎲$粭鐔煎焵椤掑嫬钃熼柣鏃傚帶缁犳煡鏌熸导瀛樻锭婵炲牜鍘剧槐鎾存媴閸濆嫅锝夋煕閵娿儲鍋ョ€殿喖顭烽弫鎾绘偐閼碱剦妲规俊鐐€栭崝褏寰婇崸妞尖偓鍛鐎涙ǚ鎷洪梺鍛婄缚閸庡崬鈻嶉幇鐗堢厵闁告垯鍊栫€氾拷
濠电姷鏁告慨鐑藉极閹间礁纾块柟瀵稿Т缁躲倝鏌﹀Ο渚&婵炲樊浜濋弲婊堟煟閹伴潧澧幖鏉戯躬濮婅櫣绮欓幐搴㈡嫳缂備礁顑嗛幑鍥Υ閸涘瓨鍊婚柤鎭掑劤閸欏棝姊虹紒妯荤闁稿﹤婀遍埀顒佺啲閹凤拷: 闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈡晝閳ь剛澹曡ぐ鎺撶厽闁硅揪绲鹃ˉ澶岀棯椤撴稑浜鹃梻鍌欑閹诧繝宕濋弴鐐嶇喐绻濋崒妯峰亾閹烘挾绡€婵﹩鍘鹃崣鍡涙⒑缂佹ɑ绀€闁稿﹤婀遍埀顒佺啲閹凤拷 闂傚倸鍊搁崐宄懊归崶褏鏆﹂柛顭戝亝閸欏繘鏌℃径瀣婵炲樊浜滃洿闂佹悶鍎荤徊鑺ョ閻愵剚鍙忔俊顖滃帶鐢爼鏌h箛銉╂闁靛洤瀚版慨鈧柨娑樺閸d即姊烘潪鎵妽闁圭懓娲顐﹀箻缂佹ɑ娅㈤梺璺ㄥ櫐閹凤拷 闂傚倸鍊搁崐宄懊归崶褏鏆﹂柣銏⑶圭粣妤呮煙閹殿喖顣奸柛瀣剁節閺屾洘寰勯崼婵嗗濠电偞鍨惰彜婵℃彃鐗撻弻鏇$疀閺囩倫銉╂煥濞戞瑧娲存慨濠呮閹瑰嫰濡搁妷锔惧綒闂備胶鎳撻崵鏍箯閿燂拷 闂傚倸鍊搁崐鐑芥倿閿曞倹鍎戠憸鐗堝笒閺勩儵鏌涢弴銊ョ仩闁搞劌鍊垮娲敆閳ь剛绮旈悽绋跨;闁靛牆顦伴悡娑㈡煕閵夛絽鍔氶柣蹇d邯閺屾稒鎯旈埥鍛板惈闂佸搫琚崝鎴﹀箖閵堝纾兼繛鎴烇供娴硷拷 闂傚倸鍊搁崐鎼佸磹閻戣姤鍊块柨鏇炲€归崕鎴犳喐閻楀牆绗掔痪鎯х秺閺岋繝宕堕埡浣圭€惧┑鐐叉噽婵炩偓闁哄矉绠戣灒濞撴凹鍨遍埢鎾斥攽閻愭彃鎮戦柣妤冨█瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷 闂傚倸鍊搁崐鎼佸磹閻戣姤鍊块柨鏇炲€归崕鎴犳喐閻楀牆绗掔痪鎯ф健閺屾稑螖閸愌呴棷濠电偛妯婃禍婊勫劔闂備焦瀵уΛ浣肝涢崟顐殨闁秆勵殕閳锋垿鎮归幁鎺戝婵炲懏鍔欓弻鐔煎礄閵堝棗顏� 闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳氨绱撻崒娆掑厡缂侇噮鍨堕妴鍐川鐎涙ê浠奸梺缁樺灱婵倝宕戦妸褏纾奸悗锝庡亜椤曟粓鏌f惔顔煎⒋婵﹨娅i幑鍕Ω閵夛妇褰氶梻浣烘嚀閸ゆ牠骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柛顐f礀绾惧潡鏌i姀鈶跺湱澹曟繝姘厵闁硅鍔﹂崵娆戠磼閳ь剚寰勯幇顔煎絼闂佹悶鍎崝宥囦焊閻㈠憡鐓涢柛鈩冨姇閳ь剚绻堝濠氬Ω閳哄倸浜為梺绋挎湰缁嬫垿顢旈敓锟� 闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柛顐f磸閳ь兛鐒︾换婵嬪礋椤撶媭妲卞┑鐐存綑閸氬岣垮▎鎴濐棜閻熸瑥瀚换鍡涙煏閸繃鍣洪柛锝呮贡缁辨帡鎮╁畷鍥р拰闂佸搫琚崝鎴﹀箖閵堝纾兼繛鎴烇供娴硷拷 闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊椤掑鏅梺鍝勭▉閸樿偐绮堥崒娑氱闁糕剝蓱鐏忣厾鐥幆褎鍋ラ柡宀嬬磿娴狅妇鎷犻幓鎺戭潛闂備焦鐪归崐婵堢不閺嶎厼钃熼柕濞炬櫆閸嬪棝鏌涚仦鍓р槈妞ゅ骏鎷� 闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳碍淇婇悙顏勨偓鏍垂閻㈢ǹ鐤柡澶嬪灩閺嗭箓鏌¢崶銉ョ仼缂佺姷绮妵鍕籍閸屾粍鎲樺┑鈽嗗亜閹虫ê顫忛搹瑙勫磯闁靛ǹ鍎查悵銏ゆ⒑閻熸澘娈╅柟鍑ゆ嫹 缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧湱绱掔€n偓绱╂繛宸簻鍥撮梺绯曟閺呮粓顢欓弮鍫熲拺鐟滅増甯楅敍鐔虹磼鐠佸湱绡€鐎殿噮鍋呯换婵嬪炊閵娧冨汲闂備胶绮ú鏍磹閸︻厸鍋撳鐐 濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姳鍗抽弻娑㈩敃閿濆棛顦ョ紒鐐劤缂嶅﹪寮婚垾鎰佸悑閹肩补鈧磭顔愰梻浣虹帛鐢帡鎮樺璺何﹂柛鏇ㄥ灠缁犳娊鏌熼幖顓炵仭闁轰線绠栭弻锝嗘償閵忋垹鏆¢梺鐟板殩閹凤拷 闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柛顐f礀閸屻劎鎲稿澶樻晪闁挎繂顦粻姘舵煠閸撴彃鍘告慨瑙勵殜濮婃椽宕ㄦ繝鍌毿曢梺鍝ュУ閻楁粎鍒掗崼鐔风窞闁归偊鍘鹃崣鍡涙⒑缂佹ɑ绀€闁稿﹤婀遍埀顒佺啲閹凤拷 闂傚倸鍊搁崐鎼佸磹閻戣姤鍊块柨鏇楀亾妞ゎ亜鍟村畷褰掝敋閸涱垰鏁稿┑鐐存尰閸╁啴宕戦幘鎼闁绘劘灏欑粻濠氭煛娴h宕岄柡浣规崌閺佹捇鏁撻敓锟� 濠电姷鏁告慨鐑藉极閸涘﹦绠鹃柍褜鍓氱换娑欐媴閸愬弶鎼愮痪鎹愵嚙閳规垿鎮╅崣澶嬫倷缂備胶濯崹鍫曞蓟閵娾晜鍋嗛柛灞剧☉椤忥拷 闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柛顐f礀閸屻劎鎲告惔銊ョ畾闁哄倸绨遍崼顏堟煕椤愶絿绠樻い鏂挎濮婅櫣鎹勯妸銉︾彚闂佺懓鍤栭幏锟� 闂傚倸鍊搁崐宄懊归崶顒夋晪鐟滃繘骞戦姀銈呯疀妞ゆ挆鍕靛晬闂傚⿴鍋勫ú锔剧矙閹寸姷涓嶆い鏍仦閻撱儵鏌i弴鐐测偓鍦偓姘炬嫹 闂傚倸鍊搁崐鎼佸磹閻戣姤鍊块柨鏇炲€哥粻鏍煕椤愶絾绀€缁炬儳娼¢弻銈囧枈閸楃偛顫梺娲诲幗閻熲晠寮婚悢鍛婄秶闁诡垎鍛掗梻浣芥〃缁€浣肝涘┑瀣摕闁靛ň鏅滈崑鍡涙煕鐏炲墽鈽夋い蹇ユ嫹 闂傚倸鍊搁崐宄懊归崶褏鏆﹂柛顭戝亝閸欏繘鏌℃径瀣婵炲樊浜滈悡娑樏归敐鍥у妺婵炲牓绠栧娲礈閼碱剙甯ラ梺绋款儏閹冲酣鍩㈠澶嬪亹缂備焦岣块崣鍡涙⒑缂佹ɑ绀€闁稿﹤婀遍埀顒佺啲閹凤拷 闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈠煕濮橆厽銇濋柡浣稿暣閸┾偓妞ゆ巻鍋撻柣婊冾煼瀹曞綊顢欑憴鍕偓濠氭⒑鐟欏嫬鍔ょ紒澶嬫綑鐓ゆい鎾卞灩閺嬩線鏌熼崜褏甯涢柡鍛倐閺屻劑鎮ら崒娑橆伓
濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姴缍婇弻宥夊传閸曨剙娅i梺绋胯閸旀垿寮婚妶鍚ゅ湱鈧綆鍋呴悵鎺楁⒑缂佹ê绗掗柨鏇ㄤ邯瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷: 闂傚倸鍊搁崐鐑芥倿閿曞倹鍎戠憸鐗堝笒閺勩儵鏌涢弴銊ョ仩闁搞劌鍊垮娲敆閳ь剛绮旈悽绋跨;闁靛牆顦伴悡娑㈡煕閵夛絽鍔氶柣蹇d邯閺屾稒鎯旈埥鍛板惈闂佸搫琚崝鎴﹀箖閵堝纾兼繛鎴烇供娴硷拷 闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊瑜滃ù鏍煏婵炵偓娅嗛柛濠傛健閺屻劑寮撮悙娴嬪亾瑜版帒纾婚柨鐔哄У閻撱儵鏌¢崶顭戞當濞存粌澧介埀顒€鍘滈崑鎾绘煥濠靛棙鍣洪柛瀣ㄥ劦閺屸剝鎷呯憴鍕3闂佽桨鐒﹂幑鍥极閹剧粯鏅搁柨鐕傛嫹 闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊椤掑鏅梺鍝勭▉閸樿偐绮堥崼鐔稿弿婵☆垰娼¢崫铏光偓瑙勬礃閻擄繝寮诲☉銏犵労闁告劦浜栧Σ鍫ユ⒑缂佹ê绗掗柣蹇斿哺婵$敻宕熼姘鳖唺闂佽鎯岄崹閬嶅极妤e啯鐓熼幖娣灮閸熸煡鏌熼崙銈嗗 濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姴缍婇弻宥夊传閸曨剙娅i梺娲诲幗椤ㄥ﹪寮诲鍫闂佸憡鎸婚惄顖炲春閳ь剚銇勯幒鎴濇灓婵炲吋鍔欓弻鐔哄枈閸楃偘鍠婂Δ鐘靛仜缁绘﹢寮幘缁樻櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偛顦甸弫鎾绘偐閸愯弓缃曢梻浣虹帛閸旀ḿ浜稿▎鎾虫辈闁挎洖鍊归悡鐔兼煏韫囧﹥鍤夐柛锔诲幘娑撳秹鏌″搴″箺闁绘挶鍎甸弻锝夊即閻愭祴鍋撻崷顓涘亾濮樼偓瀚� 濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姳鍗抽幃褰掑炊瑜嶉弬鈧紓鍌氬€圭喊宥囨崲濞戙垹骞㈡俊顖濇娴煎洦绻濆▓鍨灍濠电偛锕濠氬Ω閳哄倸浜為梺绋挎湰缁嬫垿顢旈敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾圭€瑰嫭鍣磋ぐ鎺戠倞妞ゎ剦鍓氶惄顖氱暦閻旂⒈鏁嶆繛鎴灻肩純鏇㈡⒒娴e憡璐¢柛瀣尭椤啴宕稿Δ鈧弸浣搞€掑锝呬壕闂佸搫琚崝鎴﹀箖閵堝纾兼繛鎴烇供娴硷拷 婵犵數濮烽弫鍛婃叏閻㈠壊鏁婇柡宥庡幖缁愭淇婇妶鍛仾闁瑰啿鐭傚缁樻媴鐟欏嫬浠╅梺鍛婃煥缁绘劙鍩㈤弬搴撴婵犲﹤鎳嶇純鏇㈡⒒閸屾瑦绁版繛澶嬫礋瀹曟娊鏁冮崒姘鳖唵闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈡晝閳ь剛澹曢崷顓犵<閻庯綆鍋撶槐鈺傜箾瀹割喕绨婚崶鎾⒑閹肩偛鍔电紒鑼跺Г缁傚秹宕滆濡垶鏌℃径瀣靛劌婵℃彃缍婇幃妤€顫濋悙顒€顏� 闂傚倸鍊搁崐鎼佸磹閻戣姤鍊块柨鏇炲€搁崹鍌涚節闂堟侗鍎愰柛濠傛健閺屻劑寮撮悙娴嬪亾閸涘⿴鏀伴梻鍌欒兌缁垶宕濆Δ鍛瀬闁告縿鍎抽惌鍡椻攽閻樺弶澶勯柣鎾卞劦閺岋綁寮撮悙娴嬪亾閸︻厸鍋撳鐐 濠电姷鏁告慨鎾儉婢舵劕绾ч幖瀛樻尭娴滅偓淇婇妶鍕妽闁告瑥绻橀弻鐔虹磼閵忕姵鐏堥柣搴㈣壘椤︿即濡甸崟顖氱闁瑰瓨绻嶆禒濂告⒑閽樺鏆熼柛鐘崇墵瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷 闂傚倸鍊搁崐鎼佸磹閻戣姤鍊块柨鏇炲€哥粻鏍煕椤愶絾绀€缁炬儳娼¢弻鐔虹磼濡櫣顑傞梺鍝勬4闂勫嫭绌辨繝鍥舵晬婵炲棙甯╅崝鍛攽閻愯尙姣為柡鍛█瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷 濠电姷鏁告慨鐑姐€傞鐐潟闁哄洢鍨圭壕缁樼箾閹存瑥鐒洪柡浣稿閺屾盯濡烽鐓庮潻缂備焦鍔栭〃濠囧蓟閻旂厧绠查柟浼存涧濞堫參姊洪崨濠傜仼濠电偐鍋撻梺鍝勮閸旀垿骞冮妶澶婄<婵炴垶锕╂导锟� 闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊椤掆偓绾惧鏌熼幍顔碱暭闁稿鍊濋弻锟犲礃閵娧冾暫闂佹悶鍔岄崐鍧楀蓟瑜戠粻娑㈡晲閸涱剛鍑规繝鐢靛仜閹虫劖绻涢埀顒勬煛鐏炶濮傞柟顔哄€濆畷鎺戔槈濮楀棔绱� 闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊椤掆偓绾惧鏌熼幍顔碱暭闁稿鍊濋弻锟犲礃閵娧冾暫闂佹悶鍔岄崐褰掑Φ閸曨垰鍐€闁靛ě鍛帓缂傚倷鑳舵慨闈浳涢崘顔艰摕闁靛ň鏅滈崑鍡涙煕鐏炲墽鈽夋い蹇ユ嫹 闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊椤掆偓绾惧鏌熼幍顔碱暭闁稿鍊濋弻锟犲礃閵娧冾暫闂佹悶鍔岄崐鍧楀蓟閻斿皝鏋旈柛顭戝枟閻忔捇姊洪崨濠庢畷鐎光偓閹间礁钃熼柕濞炬櫆閸嬪棝鏌涚仦鍓р槈妞ゅ骏鎷� 闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈡晝閳ь剛澹曡ぐ鎺撳仭婵炲棗绻愰鈺呮煕閵婏附顥堥柡宀嬬畱铻e〒姘煎灡妤旈梻浣告惈濡酣宕愬┑瀣摕闁靛ň鏅滈崑鍡涙煕鐏炲墽鈽夋い蹇ユ嫹 闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柛顐f礀缁犵娀鏌熼幑鎰靛殭閻熸瑱绠撻幃妤呮晲鎼粹€愁潻闂佹悶鍔嶇换鍫ョ嵁閺嶎灔搴敆閳ь剚淇婇懖鈺冩/闁诡垎浣镐划闂佸搫琚崝鎴﹀箖閵堝纾兼繛鎴烇供娴硷拷 闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾鐎规洏鍎抽埀顒婄秵閳ь剦鍙忕紞渚€鐛幒妤€绠婚柛娆愥缚閻帡姊绘担鍝ョШ婵☆偉娉曠划鍫熺瑹閳ь剙鐣峰▎鎾村亹缂備焦岣块崣鍡涙⒑缂佹ɑ绀€闁稿﹤婀遍埀顒佺啲閹凤拷
当前位置: 首页 > 医学版 > 期刊论文 > 基础医学 > 病菌学杂志 > 2006年 > 第10期 > 正文
编号:11200628
Isolation and Genetic Characterization of New Reas

     Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa

    University of Minnesota Veterinary Diagnostic Laboratory, College of Veterinary Medicine, St. Paul, Minnesota

    ABSTRACT

    Since the introduction of H3N2 swine influenza viruses (SIVs) into U.S. swine in 1998, H1N2 and H1N1 reassortant viruses have emerged from reassortment between classical H1N1 and H3N2 viruses. In 2004, a new reassortant H3N1 virus (A/Swine/Minnesota/00395/2004) was identified from coughing pigs. Phylogenetic analyses revealed a hemagglutinin segment similar to those of contemporary cluster III H3N2 SIVs and a neuraminidase sequence of contemporary H1N1 origin. The internal genes were of swine, human, and avian influenza virus origin, similar to those of contemporary U.S. cluster III H3N2 SIVs. The recovery of H3N1 is further evidence of reassortment among SIVs and justifies continuous surveillance.

    TEXT

    Influenza A virus is a highly infectious respiratory pathogen in the respective natural hosts, which include birds, lower mammals, and humans (1, 13, 24). The primary clinical manifestations of viral infection in mammals are fever and acute respiratory distress (nasal discharge, coughing, and dyspnea).

    Influenza A virus is an enveloped RNA virus containing eight segments of negative-sense RNA (13), which encode 10 proteins, including hemagglutinin (HA), neuraminidase (NA), matrix 1 (M1), M2, nucleoprotein (NP), nonstructural proteins (NS1 and NS2), and a polymerase complex (PA, PB1, and PB2). The virus can be further classified into 16 HA and 9 NA subtypes, all of which are maintained in aquatic birds (4, 13, 18, 23, 24).

    Currently, variants of three predominant HA-NA combinations of influenza viruses (H1N1, H3N2, and H1N2) are circulating in swine populations throughout the world (2, 14). Prior to 1998, only the "classical" H1N1 virus, comprised of RNA segments that were all of swine origin, was identified in U.S. swine populations (14) following the first isolation of an influenza virus in the early 1930s (19). At present, the predominant H1N1 swine influenza viruses (SIVs) isolated in the United States are reassortant H1N1 viruses carrying RNA segments (PA and PB2) of avian origin (7). In late 1998, a novel SIV of H3N2 subtype (double-reassortant H3N2 viruses) was isolated from pigs in North Carolina demonstrating respiratory disease. The virus contained HA, NA, and PB1 segments of human influenza virus origin and other gene segments from classical H1N1 SIV (21, 28). Subsequent H3N2 isolates from other states were triple-reassortant viruses, containing HA, NA, and PB1 segments from human influenza viruses; M, NS1, and NP segments from classical H1N1 SIV; and PA and PB2 segments from avian viruses (21, 28). Additionally, reassortment between triple-reassortant and classical swine H1N1 viruses has produced H1N2 viruses (8). To date, variants of triple-reassortant H3N2 and H1N2 and reassortant H1N1 influenza viruses are circulating in U.S. swine populations (3, 8, 9, 10, 11, 15, 22). Here, we report the identification of a fourth HA-NA subtype combination—H3N1—in U.S. swine as a result of reassortment between H3N2 and H1N1 viruses.

    In October 2004, a 1,000-head swine farm in Minnesota experienced a severe respiratory disease outbreak in 14-week-old pigs, which was characterized by coughing and increased mortality. The morbidity was approximately 80%, and the accumulated mortality reached 5% during the episode. Normal death loss in the index farm was less than 1% prior to the outbreak. Tissues from two dead pigs were submitted to the Veterinary Diagnostic Laboratory at the University of Minnesota for respiratory-disease diagnostic tests.

    Grossly, the lungs were heavy and dark red. Microscopically, there was acute, purulent, and histiocytic bronchopneumonia with subacute pleuritis. Influenza A virus RNA, porcine reproductive and respiratory syndrome virus RNA, and type 2 porcine circovirus DNA were detected by PCR testing of the lung tissue, and Mycoplasma hyopneumoniae DNA was detected by PCR on bronchial swabs. Actinobacillus suis and Pasteurella multocida were isolated from the lungs.

    Virus isolation (25) was attempted on lung tissues for influenza virus to further characterize the virus, since the herd was considered to be well vaccinated for swine influenza. A cytopathic virus capable of agglutinating rooster red blood cells was isolated in MDCK cells inoculated with the sample. The culture fluid was positive for influenza A viral RNA by reverse transcription (RT)-PCR and for influenza A virus NP by antigen-capture enzyme-linked immunosorbent assay (Directgen FluA; Becton-Dickinson, Franklin Lakes, NJ). Unexpectedly, the subtype of the virus isolate, as determined by a real-time multiplex RT-PCR (16), was H3N1. The isolate was plaque cloned (27), retested, and again subtyped by RT-PCR as H3N1. The presence of H3N1 virus in the lung tissues was also confirmed by RT-PCR and was the only HA-NA combination of SIV detected in the samples. Subsequently, the virus isolate was submitted to the U.S. Department of Agriculture National Veterinary Services Laboratories (Ames, Iowa) for subtyping by hemagglutination inhibition and neuraminidase inhibition assays and confirmed as H3N1. The isolate was then designated A/Swine/Minnesota/00395/2004 (H3N1).

    Further genotypic characterization of the virus was conducted by nucleic acid sequencing and phylogenetic analyses. Viral RNA was prepared from 200 μl of virus suspension with a QIAamp RNeasy Mini Kit (QIAGEN, Inc., Valencia, CA), using a protocol recommended by the manufacturer. PCR amplification of each gene segment was performed under standard conditions. The sequencing primers were designed based on a previous report (6) and are summarized in Table 1. PCR products were then purified using a QIAamp Gel extraction kit (QIAGEN) and sequenced using an ABI 3730 DNA Analyzer (Applied Biosystems, Inc., Foster City, CA). The gene sequences obtained were aligned and analyzed using Lasergene analysis software (DNASTAR, Madison, WI). Phylogenetic analyses of nucleotide sequences using the ClustalV method (5) and a BLAST search in the Influenza Sequence Database (12) demonstrated an HA segment with 95.9 to 99.5% nucleotide similarity to that of cluster III H3N2 SIVs (17, 21), the predominant H3 genotype circulating in U.S. swine (Fig. 1). The NA segment was close to that of classical H1N1 virus, with 92 to 93% identity among viral sequences available in GenBank (Table 2 and Fig. 2) but showed higher homology (98 to 99%) with contemporary H1N1 viruses from the Midwest. Other genes were of swine (M, NP, and NS1), avian (PA and PB1), and human (PB2) origin (Table 2), representative of the internal gene composition of contemporary triple-reassortant swine H3N2 viruses in North America (21, 28). This suggests that A/Swine/Minnesota/00395/2004 H3N1 influenza virus is a reassortant containing genes from triple-reassortant H3N2 and contemporary H1N1 SIVs. The clinical implications of this reassortant remain to be determined.

    At both Iowa State University and Minnesota Veterinary Diagnostic Laboratories, subtypes of SIVs implicated in clinical cases have been closely monitored using molecular diagnostics, as well as classical virologic testing, since 1998. To our knowledge, this is the first report of H3N1 virus in U.S. swine populations. Outside the United States, the emergence of H3N1 SIV from reassortment between classical H1N1 and human-type H3N2 SIVs was reported from Taiwan in 2003 (20). Taiwanese H3N1 viruses share approximately 83% and 90% identity with HA and NA segments, respectively, of the U.S. H3N1 virus. The recovery of an H3N1 subtype is further evidence of reassortment and antigenic shift in SIVs, justifying ongoing surveillance of animal populations for influenza A viruses that could represent a direct health threat, not only to swine populations, but also to humans. This study also demonstrated the usefulness of molecular technologies for such monitoring.

    The emergence of H3N1 viruses in swine was expected from reassortment between H1N1 and H3N2 viruses, since more than 60% of swine farms (sow and finisher units) in the Midwest had serological evidence of infection by both H1 and H3 viruses within 6 months after H3N2 SIV was first isolated in late 1998 (26). Interestingly, the emergence of H3N1 reassortant virus was not seen until 2004, whereas isolation of H1N2 reassortant viruses from U.S. swine was reported in 2000 (8). Although the exact reason for the delayed emergence of H3N1 virus cannot be determined, it is suspected that acquisition of PA and PB2 gene segments of avian influenza virus origin by swine H1N1 viruses (8) facilitated the production of the H3N1 reassortant. However, the precise role of avian polymerase genes in the host adaptation and replication efficiencies of influenza viruses is not well known and remains an interesting area of study regarding the ecology and evolution of influenza virus in swine.

    Nucleotide sequence accession numbers. The GenBank accession numbers of the HA segment, the NA segment, and other genes are DQ145537, DQ145538, and DQ145539 to DQ145544, respectively.

    REFERENCES

    Alexander, D. J. 2000. A review of avian influenza in different bird species. Vet. Microbiol. 74:3-13.

    Brown, I. H. 2000. The epidemiology and evolution of influenza viruses in pigs. Vet. Microbiol. 74:29-46.

    Choi, Y. K., S. M. Goyal, M. W. Farnham, and H. S. Joo. 2002. Phylogenetic analysis of H1N2 isolates of influenza A virus from pigs in the Unites States. Virus Res. 87:173-179.

    Fouchier, R. A., V. Munster, A. Wallensten, T. M. Bestebroer, S. Herfst, D. Smith, G. F. Rimmelzwaan, B. Olsen, and A. D. Osterhaus. 2005. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J. Virol. 79:2814-2822.

    Higgins, D. G., and P. M. Sharp. 1989. Fast and sensitive multiple sequence alignments on a microcomputer. Comput. Appl. Biol. Sci. 5:151-153.

    Hoffmann, E., J. Stech, Y. Guan, R. G. Webster, and D. R. Perez. 2001. Universal primer set for the full-length amplification of all influenza A viruses. Arch. Virol. 146:2275-2289.

    Janke, B. H. 2004. Swine influenza: relative prevalence of reassortants and subtypes, p. 35-39. In Proceedings of 12th Annual Swine Disease Conference for Swine Practitioners. Iowa State University, Ames.

    Karasin, A. I., C. W. Olsen, and G. A. Anderson. 2000. Genetic characterization and implications of an H1N2 influenza virus isolated from a pig in Indiana. J. Clin. Microbiol. 38:2453-2456.

    Karasin, A. I., J. Landgraf, S. Swenson, G. Erickson, S. Goyal, M. Woodruff, G. Scherba, G. Anderson, and C. W. Olsen. 2002. Genetic characterization of H1N2 influenza A viruses isolated from pigs throughout the United States. J. Clin. Microbiol. 40:1073-1079.

    Karasin, A. I., M. M. Schutten, L. A. Cooper, C. B. Smith, K. Subbarao, G. A. Anderson, S. Carman, and C. W. Olsen. 2000. Genetic characterization of H3N2 influenza viruses isolated from pigs in North America, 1977-1999: evidence for wholly human and reassortant virus genotypes. Virus Res. 68:71-85.

    Landolt, G. A., A. I. Karasin, L. Phillips, and C. W. Olsen. 2003. Comparison of the pathogenesis of two genetically different H3N2 influenza A viruses in pigs. J. Clin. Microbiol. 41:1936-1941.

    Macken, C., H. Lu, J. Goodman, and L. Boykin. 2001. The value of a database in surveillance and vaccine selection, p. 103-106. In A. D. M. E. Osterhaus, N. Cox, and A. W. Hampson (ed.), Options for the control of influenza, vol. IV. Elsevier Science, Amsterdam, The Netherlands.

    Murphy, B. R., and R. G. Webster. 1996. Orthomyxoviruses, p. 1397-1445. In B. N. Fields, D. M. Knipe, and P. M. Howley (ed.), Fields virology, 3rd ed. Lippincott-Raven Publishers, Philadelphia, Pa.

    Olsen, C. W. 2002. The emergence of novel swine influenza viruses in North America. Virus Res. 85:199-210.

    Olsen, C. W., S. Carey, L. Hinshaw, and A. I. Karasin. 2000. Virologic and serologic surveillance for human, swine and avian influenza virus infections among pigs in the north-central United States. Arch. Virol. 145:1399-1419.

    Richt, J. A., K. M. Lager, D. Clouser, E. Spackman, D. Suarez, and K.-J. Yoon. 2004. Real-time RT-PCR assays for the detection and differentiation of North American swine influenza viruses. J. Vet. Diagn. Investig. 16:367-373.

    Richt, J. A., K. M. Lager, B. H. Janke, R. D. Woods, R. G. Webster, and R. J. Webby. 2003. Pathogenic and antigenic properties of phylogenetically distinct reassortant H3N2 swine influenza viruses cocirculating in the United States. J. Clin. Microbiol. 41:3198-3205.

    Rhm, C., N. A. Zhou, J. C. Süss, J. Mackenzie, and R. G. Webster. 1996. Characterization of a novel influenza hemagglutinin, H15: criteria for determination of influenza A subtypes. Virology 217:508-516.

    Shope, R. E. 1931. Swine influenza III. Filtration experiments and etiology. J. Exp. Med. 54:373-385.

    Tsai, C.-P., and M.-J. Pan. 2003. New H1N2 and H3N1 influenza viruses in Taiwanese pig herds. Vet. Rec. 153:408.

    Webby, R. J., S. L. Swenson, S. Krauss, P. J. Gerrish, S. M. Goyal, and R. G. Webster. 2000. Evolution of swine H3N2 influenza viruses in the Unites States. J. Virol. 74:8243-8251.

    Webby, R. J., K. Rossow, G. Erickson, Y. Sims, and R. G. Webster. 2004. Multiple lineages of antigenically and genetically diverse influenza A virus co-circulating in the Unites States swine population. Virus Res. 103:67-73.

    Webster, R. G., K. F. Shortride, and Y. Kawaoka. 1997. Influenza: interspecies transmission and emergence of new pandemics. FEMS Immunol. Med. Microbiol. 18:275-279.

    Webster, R. G., W. J. Bean, O. T. Gorman, T. M. Chambers, and Y. Kawaoka. 1992. Evolution and ecology of influenza A viruses. Microbiol. Rev. 56:152-179.

    World Health Organization. 2002. WHO manual on animal influenza diagnosis and surveillance, p. 19-23. WHO/CDS/CSR/NCS/2002.5. WHO Global Influenza Programme, Geneva, Switzerland.

    Yoon, K.-J., and B. Janke. 1999. Swine influenza viruses—Emergence of new subtype in Midwest swine and current research, p. 20-25. In Proceedings of the 7th Swine Disease Conference for Swine Practitioners. Iowa State University, Ames.

    Youil, R., Q. Su, T. J. Toner, C. Szymkowiak, W.-S. Kwan, B. Rubin, L. Petrukhin, I. Kiseleva, A. R. Shaw, and D. DiStefano. 2004. Comparative study of influenza virus replication in Vero and MDCK cell lines. J. Virol. Methods 120:23-31.

    Zhou, N. N., D. A. Senne, J. S. Landgraf, S. L. Swenson, G. Erickson, K. Rossow, L. Liu, K.-J. Yoon, S. Krauss, and R. G. Webster. 1999. Genetic reassortant of avian, swine, and human influenza A viruses in American pigs. J. Virol. 73:8851-8856.(Wenjun Ma, Marie Gramer, )
    娣団剝浼呮禒鍛返閸欏倽鈧喛绱濇稉宥嗙€幋鎰崲娴f洑绠e楦款唴閵嗕焦甯归懡鎰灗閹稿洤绱╅妴鍌涙瀮缁旂姷澧楅弶鍐ㄧ潣娴滃骸甯拋妞剧稊閺夊啩姹夐敍宀冨閹劏顓绘稉鐑橆劃閺傚洣绗夌€规粏顫﹂弨璺虹秿娓氭稑銇囩€硅泛鍘ょ拹褰掓鐠囦紮绱濈拠鐑藉仏娴犺埖鍨ㄩ悽浣冪樈闁氨鐓¢幋鎴滄粦閿涘本鍨滄禒顒佹暪閸掍即鈧氨鐓¢崥搴礉娴兼氨鐝涢崡鍐茬殺閹劎娈戞担婊冩惂娴犲孩婀扮純鎴犵彲閸掔娀娅庨妴锟�

   瀵邦喕淇婇弬鍥╃彿  閸忚櫕鏁為惂鐐  鐠囧嫯顔戦崙鐘插綖  閹兼粎鍌ㄩ弴鏉戭樋   閹恒劌鐡ㄧ紒娆愭箙閸欙拷   閸旂姴鍙嗛弨鎯版