婵犵數濮烽弫鍛婃叏閻戝鈧倿鎸婃竟鈺嬬秮瀹曘劑寮堕幋鐙呯幢闂備浇顫夊畷妯衡枖濞戞碍顐介柕鍫濇啒閺冨牊鏅查柛娑卞幗濞堟煡姊虹粙娆惧剰妞ゆ垵顦靛濠氭晲閸涘倻鍠庨埢搴ㄥ箚瑜庨鍕煛婢跺棙娅嗙紒璇茬墕椤繘鎼圭憴鍕/闂侀潧枪閸庢煡鎮甸姀銈嗏拺闁荤喐婢樺▓鈺呮煙閸戙倖瀚�
闂傚倸鍊搁崐鎼佸磹閹间礁纾圭€瑰嫭鍣磋ぐ鎺戠倞妞ゆ帊绀侀崜顓烆渻閵堝棗濮х紒鐘冲灴閻涱噣濮€閵堝棛鍘撻柡澶屽仦婢瑰棝宕濆鍡愪簻闁哄倸鐏濋顐ょ磼鏉堛劍宕岀€规洘甯掗~婵嬵敄閽樺澹曢梺鍛婄缚閸庢娊鎯屽▎鎾寸厱闁哄洢鍔岄悘鐘电磼閻欌偓閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�/濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌熼梻瀵割槮缁惧墽绮换娑㈠箣閺冣偓閸ゅ秹鏌涢妷顔煎⒒闁轰礁娲弻鏇$疀閺囩倫銉︺亜閿旇娅嶉柟顔筋殜瀹曟寰勬繝浣割棜闂傚倷绀侀幉鈥趁洪敃鍌氱;濠㈣埖鍔曢弰銉╂煟閹邦喖鍔嬮柍閿嬪灴閹綊骞侀幒鎴濐瀳濠电偛鎳忛崝娆撳蓟閻旂厧绀勯柕鍫濇椤忥拷/缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛闂佽姤蓱缁诲倿婀侀梺缁樏Ο濠囧磿韫囨稒鐓曢柕濞垮劚閳ь剚鎮傚﹢渚€姊虹粙璺ㄧ闁告艾顑囩槐鐐哄箣閿旂晫鍘遍梺闈浨归崕閬嶅焵椤掆偓濞尖€愁嚕婵犳艾惟闁冲搫鍊告禍鐐烘⒑缁嬫寧婀扮紒瀣灴椤㈡棃鏁撻敓锟�
闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋為悧鐘汇€侀弴銏℃櫆闁芥ê顦純鏇㈡⒒婵犲骸浜滄繛璇у缁瑩骞嬮悩鐢靛箵濠德板€曢幊搴g不鐟欏嫮绠鹃柨婵嗛婢ь喖鈹戦垾鐐藉仮闁哄本鐩俊鎼佸Ψ閵夈垹浜鹃柛褎顨呴拑鐔兼煏婵炵偓娅嗛柛瀣閺屾稓浠﹂崜褉妲堝銈呴獜閹凤拷: 闂傚倸鍊搁崐宄懊归崶顒夋晪鐟滃秹婀侀梺缁樺灱濡嫰寮告担绯曟斀闁绘ê鐤囨竟妯肩棯閹规劦鍤欓柍瑙勫灴閹晠宕f径瀣€风紓鍌欑劍閸旀牠銆冩繝鍥ц摕闁跨喓濮撮悙濠囨煃鏉炴壆鍔嶉柣蹇庣窔濮婂搫鐣烽崶銊ユ畬缂備礁顦伴幐鎶藉春閻愬搫绠i柨鏃囨娴滃綊姊洪崨濠勬噧妞わ缚鍗抽獮鍐ㄢ枎韫囧﹥鏂€闂佸疇妫勫Λ妤佺濠靛鐓ラ柡鍥悘鑼偓娈垮枦椤曆囧煡婢舵劕顫呴柣妯荤墦閸旀垿寮婚弴锛勭杸濠电姴鍊搁埛澶愭⒑缂佹ḿ绠栭柣妤冨█楠炲啫鐣¢幍鍐茬墯闂佸憡鍔戦崝搴ㄦ儎鎼淬劍鈷戦柣鐔告緲濞堚晠鏌熼崙銈嗗 闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣椤愯姤鎱ㄥ鍡楀幊缂傚倹宀搁弻銈嗘叏閹邦兘鍋撻弽顐熷亾濮橆剦鐓奸柡宀嬬秮瀵噣宕掑顑跨帛缂傚倷璁查崑鎾愁熆閼搁潧濮囩紒鐘侯潐缁绘盯鏁愭惔鈥愁潻婵犵鈧偨鍋㈤柡灞剧☉椤繈顢楅崒婧炪劌螖閻橀潧浠﹂柣妤佹礉瑜颁礁顪冮妶鍡楀潑闁稿鎹囬弻锝堢疀閿濆懏鐝濋梺鍝勮嫰缁夊墎妲愰幒鎳崇喖鎳¢妶搴⑿ч梻鍌欑閹碱偆鎮锕€绀夐柟瀛樼箥閸ゆ洘銇勯幒鎴濐仼闁搞劌鍊归妵鍕籍閸ヨ埖缍堥柣搴$仛閻楁鎹㈠┑瀣仺闂傚牊绋愰幋鐑芥⒑闂堟稒顥滄い鎴濐樀閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊瑜忛弳锕傛煕椤垵浜濋柛娆忕箳閳ь剙绠嶉崕閬嵥囬婊呯焼闁告劏鏂傛禍婊勩亜閹捐泛鏋庨柣蹇ョ秮閺岋綁濡烽濠氬仐濠殿喖锕︾划顖炲箯閸涙潙宸濆┑鐘插暙閸撳灚淇婇悙顏勨偓鏍垂閻㈢ǹ纾归柛顭戝枤閺嗭附绻濇繝鍌氭殜闁衡偓娴犲鐓曟い鎰Т閻忣噣鏌i幘瀛樺鞍缂佺粯绻堟慨鈧柨婵嗘閵嗘劖绻濋姀锝嗙【婵炲樊鍘奸悾鐑藉箣閿曗偓缁犺崵绱撴担鑲℃垵鈻嶅⿰鍫熺厵闁兼祴鏅炶棢闂侀€炲苯澧痪缁㈠弮椤㈡瑩骞嬮悩鐢碉紳闂佺ǹ鏈悷锕偹囨搴g<闂婎剚褰冮埀顒佺箞閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵纰嶆穱濠囨倷椤忓嫧鍋撻弽顓炲瀭闁汇垻枪閻ゎ噣鏌℃径瀣仼闁哄棴绠撻弻锟犲炊閵夈儳浠鹃梺缁樺笩閸嬫劙鍩€椤掆偓缁犲秹宕曢柆宥呯疇闁规壆澧楅崑鈺傜箾瀹割喕绨奸柛濠傜仛椤ㄣ儵鎮欓懠顑胯檸闂佸憡姊圭喊宥夊Φ閸曨垱鏅滈悹鍥皺娴狀垶姊哄Ч鍥у姶濞存粣缍佽棟鐟滅増甯楅悡娑㈡倶閻愭彃鈷旈柕鍡樺笒闇夐柣娆忔噽閻g敻鏌熼鐣屾噰妞ゃ垺顨婂畷鎺戔槈閸楃偞鍊犵紓鍌氬€搁崐鎼佸磹閻戣姤鍤勯柤鎼佹涧閸ㄦ棃鏌熺紒銏犳灈缂佺媭鍨堕弻銊╂偆閸屾稑顏� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌涢锝嗙8闁逞屽厸閻掞妇鎹㈠┑瀣妞ゆ挾濯Σ鍗炩攽閻愬瓨缍戦柛姘儏宀e灝鈻庨幋婵愭闂佺鍕垫畷闁抽攱鍨堕妵鍕箳閸℃ぞ澹曠紓鍌欑椤︿即骞愰崘鑼殾鐟滅増甯掔壕濂告煟閹邦剦鍤熼柛妯绘倐濮婃椽宕ㄦ繝鍌氼潎闂佸憡鏌ㄧ€涒晠寮茬捄琛℃闁靛骏绱曢崢浠嬫⒑閸︻厼鍔嬫繛璇х畵瀹曢潧鈻庨幇鈺€绨诲銈嗘尨閸撴繄娑甸崼鏇熺厵闁荤喐婢橀顓㈡煙閻撳海绉虹€规洜鍏橀、妯衡攽閸埄妲板┑鐘垫暩婵兘銆傞鐐潟闁哄洢鍨圭壕鍧楁煙鏉堝墽鐣辩紒鐙€鍨堕弻銊╂偆閸屾稑顏� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌涢幘鑼妽闁稿繑绮撻弻娑㈩敃閿濆棛顦ラ梺姹囧€濈粻鏍蓟閿濆绠涙い鎾跺О閸嬬偤姊洪崫鍕靛剰缂佸缍婂濠氬Ω閵夈垺鏂€闂佺硶妾ч弲婊嗗€撮梻鍌欑窔閳ь剛鍋涢懟顖炲储閸濄儳纾奸柤闀愮祷婢规﹢鏌i敐鍥у幋濠碘剝鎮傞崺鈩冩媴濞差亞宕滈梻鍌欒兌閹虫捇顢氶鐔峰灁妞ゆ挾鍊i敐鍚ゆ椽顢旈崨顏呭闂備胶鍘ч~鏇㈠磹閺囩偟鎽ュ┑鐘垫暩閸嬫盯鎯囨导鏉戠9闁哄浄绱曟禍钘夆攽閻樺灚鏆╁┑顔芥綑鐓ら柕鍫濇川閻棗顭块懜闈涘闁绘挶鍎甸弻锝夊即閻愭祴鍋撻崷顓涘亾濮樼偓瀚� 婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒佹儓闁搞劌鍊块弻娑㈩敃閿濆棛顦ョ紓浣哄С閸楁娊骞冭ぐ鎺戠倞鐟滃秹寮埀顒傜磽閸屾艾鈧湱鍠婂鍥ㄥ床婵炴垯鍨归獮銏′繆椤栨繃顏犲ù鐓庢处缁绘繂鈻撻崹顔界亶婵犵數鍋涢敃顏勵嚕婵犳艾鍗抽柣鏃堫棑缁愮偤姊虹化鏇炲⒉閽冮亶鏌e┑鍥ㄢ拻缂佽鲸鎸婚幏鍛村箵閹哄秴顥氶梺璇查閸樻粓宕戦幘缁樼厱闁哄洢鍔屾晶顔济归悪鈧崹璺侯潖濞差亜绠归柣鎰絻婵⊙囨⒑閸涘﹥纾搁柛鏂跨Ч閹﹢宕卞☉娆屾嫽婵炶揪绲介幉锟犲疮閻愮繝绻嗘い鎰剁到閻忓瓨顨ラ悙鑼闁轰焦鎹囬弫鎾绘晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾圭€瑰嫭鍣磋ぐ鎺戠倞妞ゆ巻鍋撶痪鎯ь煼閺岀喖骞嶉纰辨毉闂佺ǹ顑冮崐婵嬪蓟閿熺姴绀冮柕濞у喚鏆梻浣规偠閸斿矂宕愰幖浣圭畳闂備胶枪缁绘劙宕ョ€n喖纾挎俊銈呮噺閻撴稑霉閿濆懏鍟炴い銉e灲閺岋紕浠︾拠鎻掝潎闂佽鍠撻崐婵嗙暦閹烘垟妲堟慨妤€妫旂槐锟� 闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊椤掑鏅悷婊冪箻閸┾偓妞ゆ帊鑳堕埢鎾绘煛閸涱垰孝闁伙絽鍢茶灒闁煎鍊楅惁鍫濃攽椤旀枻渚涢柛妯绘倐楠炴劙宕橀瑙f嫼闂佸憡绋戦敃銉﹀緞閸曨垱鐓曢柟鐐綑閸濊櫣鈧娲╃紞鈧紒鐘崇☉閳藉鈻庨幋婵嗘辈闂傚倷鑳剁划顖毭洪弽顓炵9闁革富鍘搁崑鎾愁潩閻愵剙顏� 婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒佹儓闁搞劌鍊块弻娑㈩敃閿濆棛顦ョ紓浣哄Т缂嶅﹪寮诲澶婁紶闁告洦鍓欏▍锝夋⒑缁嬭儻顫﹂柛鏃€鍨垮濠氭晲婢跺﹦顔掗悗瑙勬礀濞层劌危韫囨稒鈷戦柤濮愬€曢弸鎴︽倵濮橆剛澧︾€殿噮鍣e畷鐓庘攽閸℃瑧宕哄┑锛勫亼閸婃牠骞愰悙顒€鍨旀い鎾跺€i敐鍚ゆ椽顢旈崨顏呭闂備胶鍘ч~鏇㈠磹閺囩偟鎽ュ┑鐘垫暩閸嬫盯鎯囨导鏉戠9闁哄浄绱曟禍钘夆攽閻樺灚鏆╁┑顔芥綑鐓ら柕鍫濇川閻棗顭块懜闈涘闁绘挶鍎甸弻锝夊即閻愭祴鍋撻崷顓涘亾濮樼偓瀚� 闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿极閹剧粯鍋愭い鏃傛嚀娴滈箖鏌涢幇闈涘箻闁汇倐鍋撴繝鐢靛仦閸ㄨ泛鐜婚崸妤佹櫖婵炴垯鍨洪埛鎴犵磼椤栨稒绀€濠⒀嗗皺缁辨帞鈧綆鍋勯悘瀵糕偓娈垮枛閹诧紕绮悢鐓庣劦妞ゆ帒瀚拑鐔兼煟閺冨倸甯剁紒鐘崇叀閺岀喐瀵肩€涙ɑ閿┑鐐茬墱閸樺墽妲愰幘瀛樺闁告繂瀚呴敐澶嬬厱闁靛ǹ鍎查崑銉р偓娈垮枛椤兘寮幘缁樺亹闁肩⒈鍓﹀Σ瑙勪繆閻愵亜鈧牠宕濊瀵板﹪宕稿灏栧亾閸涱喖顕遍悗娑櫱氶幏娲⒑閸涘﹦缂氶柛搴″船閳诲秹骞囬悧鍫㈠幍闂佸憡鍨崐鏍偓姘炬嫹
婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧潡鏌熺€电ǹ孝缂佽翰鍊濋弻锕€螣娓氼垱锛嗗┑鐐叉▕娴滄繈寮插⿰鍫熺厽闁逛即娼ф晶顕€骞栭弶鎴含婵﹨娅g划娆撳箰鎼淬垺瀚崇紓鍌欑椤戝棝骞戦崶顒€违闁告稑鐡ㄩ崐濠氭煠閹帒鍔ら柛娆忔濮婅櫣绱掑Ο鑽ゎ槬闂佺ǹ锕ゅ﹢閬嶅焵椤掍胶鍟查柟鍑ゆ嫹: 闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋為悧鐘汇€侀弴銏℃櫇闁逞屽墰婢规洝銇愰幒鎾跺幗闂佺鎻徊楣兯夋径宀€妫い鎾寸☉娴滈箖姊婚崒娆戭槮闁硅绻濆畷婵嬪即閻愬秶鍠愮换婵嬪磼濡嘲浜鹃柟鐑樻尵缁♀偓濠殿喗锕╅崢楣冨矗閸℃稒鈷戠紓浣股戠粈鈧梺绋匡工濠€閬嶅焵椤掍胶鍟查柟鍑ゆ嫹 闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊瑜忛弳锕傛煕椤垵浜濋柛娆忕箻閺屸剝寰勭€n亝顔呭┑鐐叉▕娴滄粌娲块梻浣规偠閸庤崵寰婇懞銉ь洸闁绘劦鍓氶崣蹇斾繆椤栨粌甯堕悽顖氱埣閺岋綀绠涢妷鈺傤€嶉梺闈涙搐鐎氱増鎱ㄩ埀顒勬煥濞戞ê顏柛锝勫嵆濮婄儤娼幍顔煎闂佸湱鎳撳ú顓烆嚕椤愶箑绠荤紓浣股戝▍銏ゆ⒑鐠恒劌娅愰柟鍑ゆ嫹 闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊瑜忛弳锕傛煟閵忊懚鍦玻濡ゅ懏鐓欓柟娈垮枛椤eジ鏌涚€e墎绡€闁哄本娲樺鍕醇濠靛棗顥欐繝鐢靛仦閸ㄦ儼褰滃┑鈩冨絻閻楁捇寮婚弴锛勭杸闁哄洨鍊妷鈺傜叆婵炴垶鐟уú瀛樻叏婵犲懏顏犻柟鐟板婵℃悂濡烽敂鎯х稈闂傚倷鑳堕幊鎾诲吹閺嶎厼绠柨鐕傛嫹 闂傚倸鍊搁崐鎼佸磹閻戣姤鍊块柨鏇炲€归崕鎴犳喐閻楀牆绗掗柡鍕╁劦閺屾盯寮撮妸銉т哗闂佹悶鍔岄崐鍨潖濞差亶鏁嗛柍褜鍓涚划鏃堟偨缁嬭法锛涢梺闈涚墕椤︿即鎮″☉銏$厱闁靛绲介崝姘舵煟韫囷絼閭柡灞剧⊕閹棃鍩ラ崨鏉挎儓闂備礁鎼悮顐﹀礉閹达箑绠栭柕鍫濐槸绾惧吋绻涢幋鐑囦緵濞寸》鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸婂潡鏌ㄩ弴鐐测偓褰掑磿閹寸姵鍠愰柣妤€鐗嗙粭鎺旂棯閹呯Ш闁哄矉绻濆畷鍫曞煛娴e湱鈧儳鈹戦悙鍙夊櫧濠电偐鍋撻梺鍝勭焿缁犳垼鐏掓繛鎾村嚬閸ㄩ亶鍩㈤幘鏂ユ斀闁绘劖褰冮幃鎴︽煟濡ゅ啫鈻堢€殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸婂潡鏌ㄩ弴鐐测偓褰掑磿閹寸姵鍠愰柣妤€鐗嗙粭鎺旂棯閹勫仴闁哄本绋戣灃闁告剬鍛存7婵犵數鍋涘Ο濠冪濠婂嫬鍔旈梻鍌欑劍鐎笛兾涙担鑲濇盯宕熼顐㈡闂佺鍕垫畷闁抽攱鍨块幃褰掑箒閹烘垵顬堝┑鐐叉噺閸旀瑩寮婚悢鐓庣闁靛牆妫楅锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵姘ㄧ槐鎾诲磼濞嗘帒鍘$紓渚囧櫘閸ㄥ爼濡撮崘顔煎窛閻庢稒锚娴犲ジ姊虹紒妯虹伇濠殿喓鍊濆畷鎴﹀Ω瑜忕壕濂告倵閿濆骸浜滄い鏇熺矒閺岋絾鎯旈鐓庘拫濠殿喖锕ㄥ▍锝夊箲閸曨垰惟闁靛濡囪ぐ姘舵⒒娴g儤鍤€闁搞倖鐗犻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌涢锝嗙缁炬儳娼¢弻锝夊閳惰泛婀辨竟鏇熺節濮橆厾鍘甸梺纭咁潐閸旓箓宕靛▎鎴犵<闁逞屽墯瀵板嫰骞囬鐓庣导闂備焦鎮堕崕顖炲礉瀹ュ洣鐒婇柣銏犳啞閻撴盯鏌涢埄鍐ㄥ闁逞屽墯缁诲牆顕f繝姘╅柍鍝勫€告禍鐐烘⒑缁嬫寧婀扮紒瀣灴椤㈡棃鏁撻敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌涢锝嗙8闁逞屽厸閻掞妇鎹㈠┑瀣妞ゆ挾濯Σ鍗炩攽閻愬瓨缍戦柛姘儏宀e灝鈻庨幋婵愭闁荤喐鐟ョ€氼亞鎹㈤崱娑欑厪闁割偅绻冮崳娲煕閿濆懏璐$紒杈ㄥ浮閹晛鐣烽崶褉鎷伴梻浣告惈鐞氼偊宕濋幋锕€绠栭柕鍫濐槸绾惧吋绻涢幋鐑囦緵濞寸》鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾圭€瑰嫭鍣磋ぐ鎺戠倞妞ゆ帒顦伴弲顏堟⒑閸濆嫮鈻夐柛妯垮亹缁牓宕掑☉姘鳖啎闂佺硶鍓濊摫閻忓浚鍘鹃惀顏堝箚瑜庨崑銉╂煛瀹€瀣?濞寸媴濡囬幏鐘诲箵閹烘埈娼涢梻鍌欑劍閻綊宕愬┑鍫笉闁哄稁鍘奸拑鐔兼煏婵炵偓娅嗛柛瀣閺屾稓浠﹂崜褉妲堝銈呴獜閹凤拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵纰嶆穱濠囨倷椤忓嫧鍋撻弽顓炲瀭闁汇垻枪閻ゎ噣鏌℃径瀣仼闁哄棴绠撻弻锟犲炊閵夈儳浠肩紓浣哄Х缁垶濡甸崟顖氱睄闁稿本绮嶉幉妯衡攽閳藉棗浜滈柟铏~蹇涙惞鐟欏嫬纾梺闈浨归崕鏌ユ偟閵忋倖鈷戦柣鐔告緲濞堚晠鏌熼崙銈嗗 缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳婀辩槐鎺斺偓锝庡亾缁扁晜绻涘顔荤盎閸ユ挳姊虹化鏇燁€嗛柡鍛矒椤㈡瑩寮崼鐔叉嫼閻熸粎澧楃敮妤呮晬閻旇櫣纾奸悹浣告贡缁♀偓閻庢鍣崑鍛崲濠靛鐐婇柕濞у啫姹查梻鍌欒兌缁垰煤閺嶎厼纾归柛锔诲幐閸嬫挸顫濋悙顒€顏� 婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒佹儓闁搞劌鍊块弻娑㈩敃閿濆棛顦ョ紓浣哄С閸楁娊寮诲☉銏╂晝闁挎繂妫涢ˇ銉х磼閻愵剙鍔ょ紓宥咃躬瀵鍨鹃幇浣告倯闁硅偐琛ラ埀顒€纾鎰版⒒娴h櫣甯涢悽顖涘浮閹ê顫濈捄浣曪箓鏌涢弴銊ョ仩缂佺姵濞婇弻鐔煎箹椤撶偟浠梺杞扮窔缁犳牠寮婚敐鍡樺劅闁靛繈鍨归弳锟犳⒑閻熸澘娈╅柟鍑ゆ嫹 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌涢锝嗙闁稿被鍔庨幉绋款吋婢舵ɑ鏅梺鎸庣箓椤︻垳绮诲鑸电厾闁告挻褰冮崢鍛婃叏鐟欏嫷娈滄慨濠冩そ瀹曘劍绻濋崒姣挎洟姊洪崫銉バi柣妤佺矌閸掓帡宕奸悢椋庣獮闂佸綊鍋婇崢楣冨矗閸℃稒鈷戠紓浣股戠粈鈧梺绋匡工濠€閬嶅焵椤掍胶鍟查柟鍑ゆ嫹 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸婂潡鏌ㄩ弴妤€浜惧銈庝簻閸熸潙鐣疯ぐ鎺濇晪闁告侗鍨伴弫绋库攽閻愬瓨灏伴柛鈺佸暣瀹曟垿骞橀幖顓燁啍闂佺粯鍔樼亸娆戠不婵犳碍鐓涘ù锝堫潐瀹曞矂鏌℃担瑙勫磳闁轰焦鎹囬弫鎾绘晸閿燂拷 婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柛娑橈功缁犻箖鏌嶈閸撴氨鎹㈠☉娆愬闁告劕寮堕幖鎰棯閹规劦鍤欓柍瑙勫灴閹晠宕f径瀣€风紓鍌欒兌婵參宕归崼鏇炶摕闁靛ň鏅滈崑鍡涙煕鐏炲墽鈽夋い蹇ユ嫹 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌涢锝嗙闁稿被鍔庨幉鍛婃償閵娿儳鐣鹃梺鍝勫€哥花閬嶅醇椤忓牊鐓曟い鎰剁悼缁犳ɑ銇勯弬鎸庮棦婵﹨娅i幑鍕Ω閵夛妇褰氶梻浣烘嚀閸ゆ牠骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊椤掑鏅悷婊冪箻楠炴垿濮€閵堝懐鐤€濡炪倖鎸嗛崟闈涙櫖闂傚倸饪撮崑鍕洪敂鍓х煓闁瑰濮锋稉宥嗐亜閺嶎偄浠﹂柣鎾卞劦閺岋綁寮撮悙娴嬪亾閸︻厸鍋撳鐐 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸婂潡鏌ㄩ弴鐐测偓鍝ョ不閺嶎厽鐓曟い鎰剁稻缁€鈧紒鐐劤濞硷繝寮婚妶鍥ф瀳闁告鍋涢~顐︽⒑濞茶骞楅柣鐔叉櫊瀵鎮㈤崨濠勭Ф闂佽鍨庨崨顔ф帡姊绘担鑺ャ€冪紒鈧担鑲濇稑鈹戠€n亣鎽曢梺闈浥堥弲婊堝磻閸℃稒鐓曢悘鐐插⒔閳藉銇勮箛銉﹀ 闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊瑜忛弳锕傛煕椤垵浜濋柛娆忕箻閺屸剝寰勭€n亝顔呭┑鐐叉▕娴滄粓鎮″☉妯忓綊鏁愰崶褍濡哄┑鐐茬墦缁犳牕顫忓ú顏勭闁肩⒈鍓欑敮銉╂⒑缁嬫鍎忛柟鍐查叄閸┿垹顓兼径瀣汗缂傚倷鐒﹀玻鍧楀矗閸℃稒鈷戠紓浣股戠粈鈧梺绋匡工濠€閬嶅焵椤掍胶鍟查柟鍑ゆ嫹 闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋為悧鐘汇€侀弴銏犵厱婵﹩鍘介妵婵嬫煛娴gǹ鏆i柛鈹惧亾濡炪倖宸婚崑鎾绘煟濠婂喚鐓肩€规洖缍婇、娆戞喆閸曨厸鍋撴繝姘拺閻熸瑥瀚崝銈囩磼婢跺缍戦悡銈嗐亜閹惧崬鐏╅柡瀣╃窔閺岀喖宕滆鐢盯鏌¢崨顔藉€愰柡灞诲姂閹倝宕掑☉姗嗕紦
婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒佹儓闁搞劌鍊块弻娑㈩敃閿濆棛顦ョ紓浣哄Т缂嶅﹪寮诲澶婁紶闁告洦鍓欏▍锝夋⒑缁嬭儻顫﹂柛鏃€鍨垮濠氬Χ閸氥倕婀遍埀顒婄秵閸嬪懘鎮甸幒妤佲拺缂備焦锚缁楁帡鏌ㄩ弴銊ら偗鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹: 闂傚倸鍊搁崐鎼佸磹閻戣姤鍊块柨鏇炲€归崕鎴犳喐閻楀牆绗掗柡鍕╁劦閺屾盯寮撮妸銉т哗闂佹悶鍔岄崐鍨潖濞差亶鏁嗛柍褜鍓涚划鏃堟偨缁嬭法锛涢梺闈涚墕椤︿即鎮″☉銏$厱闁靛绲介崝姘舵煟韫囷絼閭柡灞剧⊕閹棃鍩ラ崨鏉挎儓闂備礁鎼悮顐﹀礉閹达箑绠栭柕鍫濐槸绾惧吋绻涢幋鐑囦緵濞寸》鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾圭€瑰嫭鍣磋ぐ鎺戠倞鐟滄粌霉閺嶎厽鐓忓┑鐐靛亾濞呭棝鏌涙繝鍌涘仴闁哄被鍔戝鎾倷濞村浜剧憸鐗堝笒绾惧鏌ㄩ悢鍝勑i柣鎾卞劦閺岋繝宕堕…鎴炵暥婵炲瓨绮屾晶浠嬪焵椤掆偓閸樻粓宕戦幘缁樼叆婵犻潧妫欓崳娲煕鐎c劌鍔﹂柡灞稿墲閹峰懐鎲撮崟顐わ紦闂備浇妗ㄩ悞锕傚箲閸ヮ剙鏋侀柟鍓х帛閺呮悂鏌ㄩ悤鍌涘 闂傚倸鍊搁崐鎼佸磹閹间礁纾圭€瑰嫭鍣磋ぐ鎺戠倞妞ゆ帒顦伴弲顏堟⒑閸濆嫮鈻夐柛妯垮亹缁牓宕奸悢绋垮伎濠碘槅鍨板ḿ锟犲传閾忓厜鍋撶憴鍕闁绘搫绻濆璇测槈閵忕姷鍔撮梺鍛婂姦娴滄牕危閸儲鈷戠紓浣姑粭鎺楁煟韫囨柨鍝哄┑锛勬暬瀹曠喖顢涘槌栧敽闂備浇顫夐幆宀勫垂闁秴鏋佸Δ锝呭暞閻撶喖骞栧ǎ顒€鐏柛鐔哥叀閺岀喖宕欓妶鍡楊伓 婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒佹儓闁搞劌鍊块弻娑㈩敃閿濆棛顦ョ紓浣哄Т缂嶅﹪寮诲澶婁紶闁告洦鍓欏▍锝夋⒑濞茶骞楁い銊ワ躬瀵顓奸崼顐n€囬梻浣告啞閹稿鎯勯鐐叉槬闁逞屽墯閵囧嫰骞掗幋婵囩亾濠电偛鍚嬮崝娆撳蓟閻斿搫鏋堥柛妤冨仒閸犲﹤螖閻橀潧浠滅紒缁橈耿瀵偊骞樼紒妯绘闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿极閹剧粯鍋愰柛鎰紦缂冩洟姊绘担铏瑰笡闁告梹岣挎禍绋库枎閹捐櫕杈堥梺鎸庢礀閸婂綊鎮¢悢鍏肩厪闊洤锕ラ崵澶愭煕閿旇骞樺☉鎾崇Ч閺屸€愁吋鎼粹€崇闂佺粯鎸堕崕鐢稿蓟閿濆鍗抽柣鎰ゴ閸嬫捇宕烽娑樹壕婵ḿ鍋撶€氾拷 婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒佹儓闁搞劌鍊块弻娑㈩敃閿濆棛顦ョ紓浣哄С閸楁娊骞冭ぐ鎺戠倞鐟滃秹寮埀顒傜磽閸屾艾鈧湱鍠婂鍥ㄥ床婵炴垯鍨归獮銏′繆椤栨繃顏犲ù鐓庢处缁绘繂鈻撻崹顔界亶婵犵數鍋涢敃顏勵嚕婵犳艾惟闁冲搫鍊告禍鐐烘⒑缁嬫寧婀扮紒瀣灴椤㈡棃鏁撻敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧湱鈧懓瀚崳纾嬨亹閹烘垹鍊炲銈庡墻閸撴岸鎯勯姘辨殾闁绘梻鈷堥弫宥嗙箾閹寸伝鑲╃磾閺囥垺鈷掑ù锝呮啞鐠愶繝鏌涚€n偅灏い顏勫暣瀹曠ǹ螖閳ь剟寮告担鎼炩偓鎺戭潩閿濆懍澹曢梻浣告惈鐞氼偊宕濋幋锕€绠栭柕鍫濐槸绾惧吋绻涢幋鐑囦緵濞寸》鎷� 濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣銏犲閺佸﹪鏌″搴″箹缂佹劖顨嗘穱濠囧Χ閸涱収浠鹃梺鐟板暱閻倸顫忕紒妯诲閻熸瑥瀚禒鈺呮⒑閸涘﹥鐓ョ紒缁樺姍閸┿垽寮惔鎾搭潔濠电姴锕ら幊宥囩磾閺囥垺鈷掗柛灞剧懄缁佺増绻涙径瀣鐎规洘濞婇弫鍐磼濮橀硸鍞甸梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋為悧鐘汇€侀弴銏℃櫇闁逞屽墰婢规洟宕烽鐘碉紲闁诲函缍嗛崑鎾舵閳哄倻绠剧€瑰壊鍠曠花濠氬炊閹绢喗鈷戦柟鑲╁仜閸旂數绱掗懠璺盒撶紒鍌氱Ч瀹曟粏顦存俊顐灦閺屸剝寰勭€i潧鍔屽┑鈩冨絻缂嶅﹪骞冨Δ鈧~婵嬫倷椤掆偓椤忥拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸婂潡鏌ㄩ弴鐐测偓鎼佸垂閸屾稓绡€闂傚牊渚楅崕鎰版煕婵犲倹鍋ラ柡灞诲姂瀵挳鎮欏ù瀣壕闁告稑饪撮弨浼存⒒閸屾瑨鍏岀紒顕呭灦瀹曟繂螖閸涱厽鐎梺鍛婄缚閸庢娊鎯岄崱妞绘斀闁绘ê寮舵径鍕煟閹惧崬鍔﹂柡宀嬬秮瀵挳鎮欏ù瀣壕闁革富鍘搁崑鎾愁潩閻愵剙顏� 婵犵數濮烽弫鍛婃叏閹绢喗鍎夊鑸靛姇缁狙囧箹鐎涙ɑ灏ù婊呭亾娣囧﹪濡堕崟顓炲闂佸憡鐟ョ换姗€寮婚悢铏圭<闁靛繒濮甸悘鍫ユ煟鎼淬垼澹樻い锔垮嵆婵$敻宕熼姘鳖唺闂佺懓鐡ㄧ换宥嗙婵傚憡鈷戦柦妯侯槸閺嗙喖鏌涢悩宕囧⒌鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸婂潡鏌ㄩ弴鐐测偓鍝ョ不閺嶎厽鐓曟い鎰剁稻缁€鈧紒鐐劤濞硷繝寮婚悢铏圭<婵☆垵娅i鍌炴⒑閸濆嫭锛旈梻鍕缁岃鲸绻濋崶鑸垫櫖濠电偛妫欑敮鈺呭礉閸涱厸鏀介柣鎰皺濮g偤鏌¢崨顖氣枅鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹 婵犵數濮烽弫鍛婃叏閻戝鈧倿顢欓悙顒夋綗闂佸搫娲㈤崹鍦缂佹ḿ绠鹃柟瀛樼懃閻掓椽鏌℃担绋款伃闁哄本鐩俊鐑筋敊閻撳寒娼荤紓鍌欑劍閸旀牠銆冩繝鍥ц摕闁绘梻鍘х粻鏌ユ煙娴煎瓨娑ф繛鍫弮濮婃椽宕ㄦ繝鍌滀患婵犵數鍋愰崑鎾绘⒑閸濆嫯顫﹂柛鏃€鍨块獮鍐Χ婢跺﹦锛滃┑鐐村灦閿曗晜瀵奸敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾圭€瑰嫭鍣磋ぐ鎺戠倞妞ゆ巻鍋撶痪鎯ь煼閺岀喖骞嶉纰辨毉闂佺ǹ顑冮崐婵嬪蓟閿熺姴绀冮柕濞у喚鏆梻浣规偠閸斿矂宕愰崸妤€钃熺憸鎴犵不濞戙垺鏅查柛娑卞墰閸戣绻濋悽闈涗粶闁硅櫕鍔栫换娑㈠焵椤掑嫭鐓涢悘鐐额嚙婵倿鏌熼鍝勨偓婵嗙暦閹烘垟妲堟慨妤€妫旂槐锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾圭€瑰嫭鍣磋ぐ鎺戠倞妞ゆ巻鍋撶痪鎯ь煼閺岀喖骞嶉纰辨毉闂佺ǹ顑冮崐婵嬪蓟閿熺姴绀冮柕濞у喚鏆梻浣规偠閸斿矂宕愯ぐ鎺懳﹂柛鏇ㄥ灠閸愨偓闂侀潧臎閸涱垰甯撶紓鍌氬€烽懗鑸垫叏闂堟党娑㈠礃椤旇壈鎽曢梺闈浥堥弲婊堝磻閸℃稒鐓曢悘鐐插⒔閳藉銇勮箛銉﹀ 闂傚倸鍊搁崐鎼佸磹閹间礁纾圭€瑰嫭鍣磋ぐ鎺戠倞妞ゆ巻鍋撶痪鎯ь煼閺岀喖骞嶉纰辨毉闂佺ǹ顑冮崐婵嬪蓟閿熺姴绀冮柕濞у喚鏆梻浣规偠閸斿矂宕愰崸妤€钃熼柣鏂跨殱閺嬫棃鏌涢…鎴濇灍闁诲繑鎹囧娲川婵犲孩鐣烽悗鍏夊亾闁归棿绀侀拑鐔兼煏婵炵偓娅嗛柛瀣閺屾稓浠﹂崜褉妲堝銈呴獜閹凤拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋為悧鐘汇€侀弴銏℃櫇闁逞屽墰婢规洝銇愰幒鎾充画濠电偛妫楃换鎰邦敂閳哄懏鐓曢柕濠忛檮椤ュ牓鏌″畝瀣暠閾伙絽銆掑鐓庣仭濡ゆ棃姊绘担鍛婃儓婵☆偄閰e畷鎰攽鐎n亣鎽曢梺闈浥堥弲婊堝磻閸℃稒鐓曢悘鐐插⒔閳藉銇勮箛銉﹀ 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌涢锝嗙缂佺姷濞€閺岀喖骞戦幇闈涙闁荤喐鐟辩粻鎾诲箖濡ゅ懏鏅查幖绮光偓鎰佹交闂備焦鎮堕崝宥囨崲閸儳宓侀柡宥庣仈鎼搭煈鏁嗛柍褜鍓氭穱濠囨嚃閳哄啯锛忛梺璇″瀻娴i晲鍒掗梻浣告惈鐞氼偊宕濋幋锕€绠栭柕鍫濐槸绾惧吋绻涢幋鐑囦緵濞寸》鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕閻庤娲忛崕鎶藉焵椤掑﹦绉甸柍褜鍓﹂崣蹇曠礊娓氣偓閻涱噣骞掑Δ鈧粻濠氭煕濞嗘劌缂氶柣顓熷浮濮婄粯鎷呴崫銉ㄥ┑鈽嗗亯濞夋洜鍒掗崼鐔虹懝闁逞屽墮閻e嘲鈻庨幘鏉戜汗缂傚倷鐒﹀玻鍧楀矗閸℃稒鈷戠紓浣股戠粈鈧梺绋匡工濠€閬嶅焵椤掍胶鍟查柟鍑ゆ嫹
当前位置: 首页 > 医学版 > 期刊论文 > 基础医学 > 病菌学杂志 > 2005年 > 第22期 > 正文
编号:11201994
Mutation of a Single Conserved Nucleotide between

     Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, New York 11794-5222

    ABSTRACT

    The chemical synthesis of poliovirus (PV) cDNA combined with the cell-free synthesis of infectious particles yielded virus whose mouse neurovirulence was highly attenuated (J. Cello, A. V. Paul, and E. Wimmer, Science 297:1016-1018, 2002). Compared to the wild-type PV1 (Mahoney) [PV1(M)] sequence, the synthetic virus genome harbored 27 nucleotide (nt) changes deliberately introduced as genetic markers. Of the 27 nucleotide substitutions, the UA-to-GG exchanges at nucleotides 102/103, mapping to a region between the cloverleaf and the internal ribosome entry site (IRES) in the 5'-nontranslated region, were found to be involved in the observed attenuation phenotype in mice. The UA/GG mutation at nt 102/103 in the synthetic PV1(M) [sPV1(M)] background conferred also a ts phenotype of replication to the virus in human neuroblastoma cells. Conversely, the exchange of GG to wild-type (wt) UA at 102/103 in an sPV1(M) background restored wt neurovirulence in CD155 transgenic (tg) mice and suppressed the ts phenotype in SK-N-MC cells. All poliovirus variants replicated well in HeLa cells at the two temperatures, regardless of the sequence at the 102/103 locus. Analyses of variants isolated from sPV(M)-infected CD155 tg mice revealed that the G102G103-to-G102A103 reversion alone reestablished the neurovirulent phenotype. This suggests that a single mutation is responsible for the observed change of the neurovirulence phenotype. sPV1(M) RNA is translated in cell extracts of SK-N-MC cells with significantly lower efficiency than PV1(M) RNA or sPV1(M) RNA with a G102-to-A102 reversion. These studies suggest a function for the conserved nucleotide (A103) located between the cloverleaf and the IRES which is important for replication of PV in the central nervous system of CD155 tg mice and in human cells of neuronal origin.

    INTRODUCTION

    Although the chemical synthesis of poliovirus (PV) cDNA combined with the cell-free synthesis of infectious particles has received much attention (7), the phenotypic properties of the synthetic virus have been largely ignored. The published sequence guiding the synthesis of the synthetic virus was that of a highly neurovirulent wild-type (wt) strain, poliovirus type 1 (Mahoney) [wt PV1(M)] (24, 43). To distinguish the synthetic virus [sPV1(M)] from PV1(M), we engineered 27 nucleotide changes into the sPV1(M) genome as genetic markers (7). Compared to the wt progenitor PV1(M) strain, the sPV1 derivative was, surprisingly, highly attenuated in transgenic mice (7) expressing the poliovirus receptor, CD155 tg mice, which have been constructed by Koike et al. (25). It was plausible that one or several of the nucleotide changes that had been introduced into the sPM1(M) genome altered the neurovirulence of sPV1(M).

    PV is a neurovirulent member virus of the genus Enterovirus in the family Picornaviridae. It is not yet known where the virus replicates in the gastrointestinal (GI) tract after enteric infection, but secondary lymphatic tissues most likely play a major role (21, 30, 33). Invasion of PV into the central nervous system is rare and altogether not necessary for viral dissemination in the population (33). Indeed, the ratio of infection to neurological complications in PV infections is very low (10–2 to 10–3, depending upon the virus type). Upon invasion of the central nervous system, PV targets predominantly motor neurons for destruction, which leads to paralysis and even death (33). Only humans and nonhuman primates can be infected with PV, although humans are the only natural hosts of the virus. This host range restriction is related to CD155, the only known PV receptor (33). Construction of CD155 tg mice, however, has allowed studies of PV pathogenesis (25, 45) in these animals. We are using CD155 tg mice originally constructed by A. Nomoto and his colleagues (PVRTg21) (25). The CD155 tg mice can be infected by the intramuscular, intravenous, or intracerebral route, but they are resistant to oral infection. The reason for this restriction is that the CD155 gene is not expressed under the control of the human promoter in the GI tract of these animals (21, 61). The unexplained silence of the human CD155 promoter in the mouse GI tract prevents studies of the first crucial steps in PV enteric infection in the CD155 transgenic animals.

    The genome of PV, which is of plus-strand polarity, is 7,441 nucleotides (nt) long. It carries a small protein, VPg, covalently attached to its 5' end (10, 29) and is polyadenylated at its 3' end (60).

    The genome consists of a long 5'-nontranslated region (NTR), a single large open reading frame, and a short 3'NTR (24, 58). Functionally, the 5'NTR can be divided into two regions: the 5'-terminal cloverleaf (nt 1 to 89) and the internal ribosomal entry site (IRES; nt 123 to 602) (58). Polyprotein synthesis is initiated 164 nt downstream of the IRES element at nt 743 (9, 58). The cloverleaf is an essential cis-acting signal in viral RNA replication (3, 37), while the IRES element controls cap-independent translation of the viral mRNA (22, 23, 39, 40). The two highly structured control elements are separated by 35 nucleotides that, so far, have not been assigned to any function in viral proliferation. No binding partners of these nucleotides with upstream or downstream nucleotides have been suggested and, thus, it is currently being assumed that these 35 nucleotides present a single-stranded spacer between the cloverleaf and the IRES (Fig. 1).

    The 27 nucleotide substitutions introduced into sPV1(M) mapped predominantly to the open reading frame of the polyprotein and, with the exception of one nonsynonymous change in the coding region for protein 2B, they were "silent mutations" (Fig. 1). The nonsynonymous mutation in 2B has been shown previously to exert no replication phenotype in HeLa cells (26). Two mutations (U102A103 to G102G103) mapped to the 5'NTR, specifically to the spacer region between the cloverleaf and the IRES (Fig. 1). Again, these mutations have been shown not to influence the replication of poliovirus in HeLa cells (31, 59). We assumed, perhaps naively, that none of the 27 nucleotide changes would affect replication and/or the pathogenic potential of sPV1. This assumption was wrong (7). Although sPV1(M) replicates with nearly wt kinetics in HeLa cell cultures, neurological symptoms (paralysis) after infection of CD155 tg mice were observed only with a dose of sPV1(M) that was 104 in excess of the dose required for PV1(M) (7). In this study, we have analyzed the remarkable attenuation phenotype of sPV1(M). We have observed that sPV1(M) expressed a severe ts phenotype at 39.5°C in cells of human neuronal origin (SK-N-MC cells), a phenomenon not seen in HeLa cells. We describe here that both genetic traits, the attenuation phenotype in CD155 tg mice as well as the ts phenotype in SK-N-MC cells, covary with the nucleotide substitutions at the 102/103 locus (UA to GG) of the 5'NTR. Analyses of revertants isolated from CD155 tg mice infected with sPV1(M) further narrowed the locus responsible for both genetic traits to a single A-to-G transition at nt 103.

    We will provide preliminary evidence suggesting that the phenotypic effect of these mutations in a region of the viral genome previously not assigned to any function is likely related to a defect in translation.

    MATERIALS AND METHODS

    Plasmid constructions. sPV1(M) originated from a full-length poliovirus type 1 cDNA which was chemically synthesized by assembling oligonucleotides of plus- and minus-strand polarities according to the sequence of PV1(M), as described previously (7). The genomic structure of PV1(M), as depicted in Fig. 1, indicates 27 nucleotide changes introduced into the cDNA as genetic markers. The sPV1(M) cDNA also carries a T7 RNA promoter at the 5'NTR end for synthesis of infectious RNA (57).

    pT7PV1(M) is the progenitor plasmid containing the full-length cDNA of PV1(M) (57). Recombinants between PV1(M) and sPV1(M) were constructed to determine the contributions of mutations responsible for the attenuated phenotype of sPV1(M). pT7PV1(M), which contained the PV1(M) genome, and pBR322-sPV1(M), which contained the sPV1(M) genome, were digested with EcoRI and StuI, which restrict within the vectors and at position 3836 within the PV1(M) and sPV1(M) genomes, respectively. Subsequent exchanges of resulting fragments resulted in the generation of viral variants sPV1(M)-PV1(M) and PV1(M)-sPV1(M). In sPV1(M)-PV1(M), the second half of the sPV1(M) genome was exchanged for that of PV1(M). In PV1(M)-sPV1(M), the second half of the PV1(M) genome was exchanged for that of sPV1(M).

    UA sPV1(M) cDNA is a derivative of sPV1(M) cDNA carrying wild-type UA nucleotides at the 102/103 locus in the 5'NTR. UA sPV1(M) cDNA was constructed by replacing an EcoRI-AgeI fragment of sPV1(M) cDNA (vector to nt 339 of the PV sequence, including T7 promoter sequence) that is 405 nucleotides long, by the respective EcoRI-AgeI fragment of pT7PV1(M). GG PV1(M) cDNA, the wt cDNA carrying GG at the 102/103 locus, was constructed by replacing the EcoRI-AgeI fragment of pT7PV1(M) with the respective EcoRI-AgeI fragment of sPV1(M) cDNA.

    GA PV1(M) cDNA carrying the G-to-A reversion at position 103 was generated by site-directed mutagenesis using GG PV1(M) cDNA as a template. A PCR fragment was synthesized with oligonucleotides PVPSA103 (5'-ATACTCCCTTCCCGGAACTTAGACGCACAAAACC-3'; plus-strand sequence) and 283 MS (5'-GGTTGAGTGCTGAGCGC-3'; minus-strand sequence). A second PCR fragment was synthesized with oligonucleotides PVMSA103 (5'-TTTGTGCGTCTAAGTTCCGGGAAGGGAGTATAAAAC-3'; minus-strand sequence) and T7PS (5'-TTAATACGACTCACTATAGG-3'; plus-strand sequence). The two fragments were mixed and used as template for a second PCR with 283 MS and T7PS as the outside oligonucleotides. The resulting fragment was cut with restriction enzymes Bpu1102 and PmlI and ligated into plasmid GG PV1(M), previously cut with the same restriction enzymes.

    In GA sPV1(M) cDNA, the EcoRI-AgeI fragment of sPV1(M) was replaced by the respective EcoRI-AgeI fragment of GA PV1(M) to introduce the G-to-A reversion at position 103.

    In vitro transcription, transfection, and virus isolation. All plasmids were linearized with EcoRI. RNAs were synthesized with phage T7 RNA polymerase, and the RNA transcripts were transfected into HeLa R19 cell monolayers by the DEAE-dextran method, as described previously (57). Upon exhibiting complete cytopathic effect, cell monolayers were subjected to three cycles of freezing and thawing in culture medium. The viruses were plaque purified, and the titer was determined by a standard plaque assay (41). HeLa cells were infected with plaque-purified virus at a multiplicity of infection (MOI) of 10 PFU/cell. The supernatants were titrated and used as virus stocks.

    RNA extraction, RT-PCR, and DNA sequencing. Genomic sequences were derived from total RNA of poliovirus-infected HeLa cells. HeLa cells were either infected with virus stocks or virus populations recovered from the spinal cord of poliovirus-infected CD155 tg mice (see below). RNA extracted from infected HeLa cells using TRIzol solution (Invitrogen) served as template for reverse transcription-PCR (RT-PCR). In this manner, poliovirus-specific amplicons were designed to cover the entire poliovirus genome. The RT-PCRs were performed using the Titan One-Tube RT-PCR system following the manufacturer's instructions (Roche Mannheim), and the PCR amplicons were purified with the QIAquick gel extraction kit (QIAGEN). The full-length genome sequence of the purified PCR products was determined with oligonucleotide primers in cycle sequencing (ABI Prism BigDye terminator cycle sequencing ready reaction kit; Applied Biosystems) in an automated sequencer (model 310; Applied Biosystems).

    Neurovirulence assays in mice. Groups of four to six CD155 tg mice (equal numbers of males and females) were inoculated with a given amount of virus ranging from 102 to 108 PFU (30 μl/mouse) intracerebrally for the different poliovirus strains studied here. Mice were examined daily for 21 days postinoculation for paralysis and/or death. The virus titer that induced paralysis or death in 50% of the mice (PLD50) was calculated by the method of Reed and Muench (44). Homogenized spinal cord specimens were prepared from paralyzed mice for each virus tested, and the isolated viruses were amplified in HeLa cells. Viral isolates were purified by plaque assay in monolayer cultures of HeLa cells, and virus stocks were prepared as described above. These virus stocks were used for sequencing reactions. All procedures involving experimental mice were conducted according to protocols approved by the institutional committees on animal welfare.

    One-step growth curves at 37°C and 39.5°C. One-step growth curves in HeLa cells and SK-N-MC neuroblastoma cells at 37°C and 39.5°C were carried out as follows. Cell monolayers in 35-mm plastic culture dishes were washed with Dulbecco's minimal essential medium (DMEM) and inoculated at an MOI of 10 with the virus to be tested. After the dishes were rocked for 30 min at room temperature, the cells were thoroughly washed to remove unbound virus and placed at 37°C or 39.5°C. At 0, 2, 4, 6, 8, 12, and 24 h postinfection, the dishes were subjected to three consecutive freeze-thaw cycles, and the viral titers of the supernatants were determined by plaque assay, as described before (41).

    Preparation of HeLa and SK-N-MC cell extracts. HeLa S10 cell extracts were prepared as previously described (8, 32) except for the following modifications: (i) packed cells from 2 liters of HeLa S10 were resuspended in 1 volume (relative to packed cell volume) of hypotonic buffer, and (ii) the final extracts were not dialyzed. SK-N-MC extracts were prepared as described for HeLa S10 cell-free extract except for the following modification: 20 15-cm-diameter plates of SK-N-MC grown to confluence were used to obtain 2 ml of extract. The cells were detached by brief washing with trypsin-EDTA and further incubation with a fresh portion of trypsin-EDTA at 37°C for 3 min. Trypsinization was stopped by adding 10 ml 10% fetal bovine serum in DMEM. Cell aggregates were disrupted by pipetting, and the cell suspension was transferred to a centrifuge tube containing cold 10% fetal bovine serum in DMEM. The cells were collected by centrifugation, washed three times with phosphate-buffered saline, and processed for the preparation of the extract, as described for HeLa cells. The cell viability of SK-N-MC cells after trypsinization was shown to be greater than 90% by trypan blue exclusion test.

    In vitro translation of viral mRNAs. Plasmid DNAs were linearized with EcoRI and transcribed with phage T7 RNA polymerase (57). The RNAs were purified by phenol-chloroform extraction and ethanol precipitation. The purified RNAs were translated in either HeLa or SK-N-MC cell extracts in the presence of Tran35S-label (ICN Biochemicals). The reaction mixtures were incubated at 34°C for 15 h (32). Samples of the translation reaction mixtures were analyzed on sodium dodecyl sulfate-polyacrylamide gels with 12.5% acrylamide. The gels were dried and subjected to autoradiography. The data were analyzed with the program Image J (National Institutes of Health [NIH]). The translation efficiency of each mutant RNA in HeLa or SK-N-MC cell extracts was expressed as a percentage of VP3 protein observed relative to wt PV RNA transcript in each cell extract.

    RESULTS

    We have followed two strategies to identify the mutation(s) responsible for the attenuation phenotype of sPV1(M). One was an exchange of genomic segments of the viral strains sPV1(M) and PV1(M) with subsequent analyses of neurovirulence. The other was to rescue virus from the spinal cord of sPV1(M)-infected CD155 tg mice that expressed pathology. We reasoned that virus strains isolated from diseased animals may have reverted to a neurovirulent phenotype, thereby revealing the locus of attenuation.

    In any case, the cDNAs of parental viruses or of genetically engineered derivatives were transcribed with T7 RNA polymerase, and the isolated RNAs were transfected into HeLa cell cultures. After one passage, the progeny viruses were sequenced in toto to ascertain the genotypes of the isolates. Analysis of the sequence of sPV1(M) RNA showed, as predicted, the presence of the 27 nucleotide substitutions that we had engineered into this genome to distinguish it from the sequence of PV1(M) (7).

    Exchange of genome segments between sPV1(M) and PV1(M). In our initial experiments to determine the location of the attenuating mutations in the genome of sPV1(M), we exchanged the 5'-terminal 3,836-nucleotide-long segment between this strain and the highly neurovirulent PV1(M) (see Materials and Methods). Passage of these viral variants, termed sPV1(M)-PV1(M) and PV1(M)-sPV1(M), in HeLa cells showed genotype stability. Their neurovirulent phenotype was analyzed by intracerebral inoculations of CD155 tg mice. When three mice were inoculated with either 106 or 103 PFU of PV1(M)-sPV1(M), respectively, all six animals succumbed. In contrast, the inoculation of mice with 106 and 103 PFU of sPV1(M)-PV1(M) resulted in death of one out of three animals and zero out of three animals, respectively. These results indicate that the mutations engineered in the 5'-half of PV1(M) contributed significantly to the attenuation phenotype of sPV1(M).

    Isolation of rescued viruses from sPV1(M)-infected CD155 tg mice. The data obtained so far indicated that the locus of the attenuation phenotype of sPV1(M) maps to the 5'-half of the sPV1(M) genome. The identity of the attenuating mutation was then revealed by sequencing virus isolates that had been rescued from the spinal cord of those CD155 tg mice infected with sPV1(M) that showed symptoms of neurological disease (see Materials and Methods). Full genomic sequencing of virus variants recovered from the spinal cord of mice infected with sPV1(M) demonstrated a single reversion: the transition of the G residue at nt 103 to an A residue. This reversion was observed in five out of the five plaque-purified viruses isolated from diseased mice originally inoculated with poliovirus carrying GG nucleotides at the 102/103 locus.

    Neurovirulence of revertant viruses in CD155 tg mice. To identify the contribution of the mutations at the 102/103 locus to attenuation, we tested wt, mutant, and revertant viruses for their neuropathogenic phenotypes by intracerebral inoculation of CD155 tg mice. For this purpose, we constructed several viral variants with mutations at the 102/103 locus: sPV1(M) variants with the partially reverted sequence (GA) or the wt sequence, referred to as GA sPV1(M) and UA sPV1(M), respectively, and derivatives of PV1(M), referred to as GG PV1(M) and GA PV1(M), respectively. These variants showed stable genotypes when passaged in HeLa cells.

    Analysis of neurovirulence tests in CD155 tg mice revealed that the PLD50 values of the two viruses containing the G102G103 mutations, sPV1(M) and GG wt PV1(M), were 4 log10 higher than those of UA sPV1(M) and wt PV1(M), two genotypes with a wt UA dinucleotide at 102/103 (Table 1).

    We then determined the PLD50 values of the GA sPV1(M) and GA PV1(M) variants. They were found to be >103-fold lower than those of sPV1(M) and GG PV1(M), respectively (Table 1). This observation indicates that the reversion of G to A at position 103 alone is capable of dramatically increasing the neurovirulence of the revertant viruses. Since the revertant viruses showed PLD50 values which were similar, albeit not identical, to those of the viruses carrying UA at 102/103 (Table 1), we conclude that G at position 103 is the main contributor to the attenuated phenotype of sPV1(M) and GG PV1(M).

    Polioviruses carrying G102G103 exhibit a ts phenotype in human neuroblastoma cells. To determine the growth phenotypes of sPV1(M), GG PV1(M), and UA sPV1(M) and to compare these with those of PV1(M), one-step growth curve experiments were carried out with these viruses at 37°C and 39.5°C in HeLa cells and in SK-N-MC, a human cell line of neuronal origin (5). Analysis of the growth curves showed that all poliovirus variants replicated well in HeLa cells at the two temperatures, regardless of the sequence at the 102/103 locus, e.g., GG PV1(M) and sPV1(M), and also UA sPV1(M) (Fig. 2A and B). Indeed, the variants replicated with nearly identical kinetics as wt PV1(M).

    We then determined the growth properties of these viruses in SK-N-MC cells. At 37°C, the parental and mutant viruses reached the highest titer approximately 24 h postinfection, a considerable delay in comparison to replication in HeLa cells (highest viral titers are generally between 6 and 12 h postinfection) (compare Fig. 2A with 3A). Thus, under the conditions of the experiments, the neuronal cells did not provide maximal conditions for poliovirus production.

    Although the one-step growth curves indicated that all poliovirus variants tested replicated in SK-N-MC cells at 37°C, the maximum titers of variants carrying GG at the 102/103 locus, i.e., sPV1(M) and GG PV1(M), were approximately 1 log10 unit lower than those of UA sPV1(M) and PV1(M) (Fig. 3A). Remarkably, at 39.5°C the viral variants sPV1(M) and GG PV1(M) hardly replicated at all in neuroblastoma cells (Fig. 3B). Polioviruses with a UA base pair at locus 102/103, on the other hand, retained efficient growth in this cell line at 39.5°C (Fig. 3B). Altogether, these data provide strong evidence that mutations at the 102/103 locus in the 5'NTR of poliovirus lead to a ts growth phenotype in human cells of neuronal origin.

    The G-to-A reversion at position 103 suppresses the ts phenotype of sPV1(M) and GG PV1(M) in SK-N-MC cells. We have previously observed that virus isolated from the spinal cord of paralyzed mice infected with sPV1(M) harbored only one nucleotide change with respect to the parental virus, e.g., a reversion of G to A at 103 (see above). This identical and unique change was also detected in virus isolated from the spinal cord of paralyzed mice inoculated with GG PV1(M). To characterize the growth phenotype conferred by this reversion at position 103, the growth kinetics of GA sPV1(M) and GA PV1(M) were determined. Plaque-purified isolates of either variant were assayed in HeLa and SK-N-MC cells at 37°C and 39.5°C. As shown in Fig. 2A and B, both variants grew well in HeLa cells at the two temperatures tested.

    GA sPV1(M) and GA PV1(M) also replicated efficiently in SK-N-MC cells at 37°C, as evidenced by one-step growth experiments (Fig. 3A). At this temperature, the final yield of the revertant viruses approached that of PV1(M) and UA sPV1(M), two viruses with a wt UA dinucleotide pair at the 102/103 locus (Fig. 3A). Remarkably, GA sPV1(M) and GA PV(M) also replicated well in SK-N-MC at 39.5°C, displaying growth phenotypes similar to that of PV1(M) and UA sPV1(M) (Fig. 3B). These results suggest that the reversion of G to wt A at position 103 was sufficient to overcome the ts phenotype of poliovirus mutants with a GG pair at the 102/103 locus. Interestingly, the loss of the ts phenotype in SK-N-MC cells covaried with the loss of neurovirulence in CD155 tg mice.

    Nucleotide sequence alignment of the spacer region between the cloverleaf and the IRES of polioviruses. Nucleotides 102 and 103 are localized in a relatively unstructured spacer region of approximately 35 nt that connects the end of the cloverleaf and the beginning of the IRES (Fig. 1). Nucleotide sequence alignment analysis showed that this region has many conserved nucleotides among poliovirus serotypes, including an A at position 103 (Fig. 4). The presence of a high degree of nucleotide conservation in this segment of the poliovirus genome suggests a function for this region. Moreover, the AACUUAGA octanucleotide is highly conserved among the majority of the C-cluster coxsackie A viruses, which are closely related to poliovirus (Fig. 4).

    In vitro translations of viral mRNAs in HeLa and SK-N-MC cell extracts. To determine whether the reduced growth phenotypes of G102G103 viruses in neuronal cells may be related to a defect in translation, we have begun to test the translational efficiencies of wt and mutant viral RNAs in HeLa and SK-N-MC cell extracts. Generally, the translation of each RNA tested appeared to be more efficient in HeLa than in SK-N-MC cell extracts (Fig. 5). This difference is apparent even with PV1(M) RNA (Fig. 5, compare lanes 5 and 6), the wt poliovirus RNA previously shown to initiate a complete translation/replication/encapsidation cycle in HeLa cell extracts (32). Extremely poor translation in SK-N-MC extracts, in comparison to HeLa cell extracts, was observed with all viral RNAs carrying GG at locus 102/103 (compare lanes 1 and 2 and lanes 7 and 8). In SK-N-MC cells, the efficiency was reduced to 20% and 36% for GG PV1(M) and sPV1(M), respectively, compared to translation of RNAs carrying the UA sequence at 102/103 (Fig. 5, compare lane 1 with lane 5 and lane 7 with 9). Indeed, recovery was even achieved with the variants of PV1(M) and sPV1(M) RNAs in which only G103 had been changed to the wt A residue (compare lane 1 with 3 and lane 7 with 11, respectively). Overall, our findings indicate that the differences in translation efficiencies of RNAs observed in the cell extracts correlated with differences in growth phenotypes of the viruses in HeLa and SK-N-MC cells. Remarkably, the G-to-A reversion at position 103, which correlated with the suppression of the ts phenotype in SK-N-MC cells and restoration of the wt neurovirulence in CD155 tg mice of poliovirus mutants with a GG pair at the 102/103, significantly increased the translation efficiency of the poliovirus RNAs in neuronal cell extracts.

    DISCUSSION

    The 5'NTR of poliovirus has a modular organization in which the cloverleaf and the IRES regulate primarily RNA replication and viral protein synthesis, respectively (1, 16, 58). Nucleotide changes in these RNA structures can have a profound effect on the replication phenotype and/or pathogenic properties of polioviruses (13, 58). The work described here shows that mutations in the nucleotide sequence which separates the cloverleaf from the IRES also affect the biological properties of the virus variant. Indeed, we report that this spacer region carries an important functional element that so far had escaped detection.

    The novel finding is based on phenotypic analyses of a synthetic poliovirus [sPV1(M)] whose genome harbors 27 nucleotide substitutions compared to the genome of PV1(M) (7). Two phenotypes of sPV1(M) revealed the importance of the spacer region between the cloverleaf and the IRES element. The first was the highly attenuated phenotype of sPV1(M) in CD155 tg mice, and the second was the ts phenotype of sPV1(M) replication in human neuronal cells (SK-N-MC cells).

    Genetic analyses described here have allowed us to unambiguously conclude that of the 27 nucleotide substitutions engineered into sPV1(M), the GG mutations at locus 102/103 are solely responsible for the attenuation phenotype and temperature sensitivity of sPV1(M) in neuroblastoma cells. First, the exchange of GG to wt UA at the 102/103 positions in an sPV1(M) background suppressed the ts phenotype in SK-N-MC cells and restored the wt neurovirulence in CD155 tg mice. Second, the exchange of wt UA to GG at the 102/103 locus in a PV1(M) background conferred to the mutant a ts phenotype in the neuronal cell line and a highly attenuated phenotype for neurovirulence in CD155 tg mice.

    The search for revertants in paralyzed CD155 tg mice has further narrowed the genetic locus of ts and attenuation. Remarkably, a G-to-A reversion at position 103 was the only nucleotide change observed in the genome of viruses recovered from the spinal cords of paralyzed mice inoculated with sPV1(M) or with GG PV1(M). This finding indicates that motor neurons of CD155 tg mice exerted a selective pressure on two polioviruses carrying GG at locus 102/103 to revert the G residue to an A residue, and only to this A residue, at position 103. Furthermore, revertant viruses [GA sPV1(M) and GA PV1(M)] had acquired the neurovirulent and growth phenotype of PV1(M). These data strongly suggest that the G103A direct back reversion was necessary and sufficient to restore the neurovirulence typical of PV1(M) and to suppress the ts phenotype in neuronal cells conferred by the G102G103 mutations (Fig. 2B and 3B). Collectively, our data show that the ts phenotype in SK-N-MC cells correlates with an attenuation phenotype of poliovirus in CD155 transgenic mice. Fittingly, PV1(RIPO), a chimeric virus in which the cognate IRES was exchanged to that of human rhinovirus 2, is not only highly attenuated in CD155 tg mice (11, 12) but is also highly ts in SK-N-MC cells (S. Mueller, N. Jahan, R. Welker, H. Toyoda, J. Cello, and E. Wimmer, unpublished data). These observations support a previous suggestion that neuroblastoma cells may serve as a tissue culture model for studying poliovirus neurovirulence (2, 28), although caution should be exercised not to generalize this association. On the other hand, it is important to note that the exchange of the IRES in PV1 (RIPO) is done by modifying conserved nucleotides localized in the region between the cloverleaf and the IRES of poliovirus. In view of the findings described here, we are presently examining the contribution of these modifications to the attenuated phenotype of PV1(RIPO).

    An alignment of the spacer region between the cloverleaf and the IRES for many of the known polioviruses indicates variable as well as highly conserved regions (Fig. 4). With respect to the 102/103 locus, A103 is completely conserved and so are seven other bases downstream of nt 103 (A103ACUUAGA110). However, mutations of bases other than G103, which could serve as second site suppressors, have not been observed, a result in support of the importance of the 103 locus. Sequence analyses of the genomes of vaccine-derived viruses and field poliovirus isolates showed that base substitutions are frequent at position 102 while the A residue at position 103 is invariable (4, 42). These findings indicate that the conservation of an A residue at position 103 in the 5'NTR is critical for efficient replication of polioviruses.

    Among the enteroviruses, the C-cluster coxsackie A viruses are most closely akin to poliovirus (18, 34, 35). Their genomic sequences have been recently determined (6; P. Jiang, H. Shimizu, E. Rieder, and E. Wimmer, unpublished data). Interestingly, among the majority of the C-cluster coxsackie A viruses, the AACUUAGA octanucleotide is also conserved. However, this region harbors many base changes in other enterovirus genomes. Nevertheless, an alignment of all known enterovirus sequences indicates complete conservation of an A residue corresponding to poliovirus A103 (36). Whether changes of this A residue in the genome of other enteroviruses will yield phenotypes such as host cell-dependent temperature sensitivity is currently under investigation.

    What is the molecular basis for the attenuation and ts phenotypes of the sPV1(M) and GG PV1(M) viruses, which harbor G102G103? We do not yet have an explanation, but the inefficiency by which the GG-variant RNAs are translated in cell extracts of SK-N-MC cells suggests that the mutation at the 103 locus downregulates protein synthesis in cells of neuronal origin. This effect is host cell specific, since genomic RNAs of the different virus derivatives, regardless of the genotype of their spacer region, translate well in HeLa extracts, albeit not with the same efficiency as wt PV1(M) (Fig. 5). Further work to substantiate the effect of the 102/103 mutations on translation is in progress.

    Nomoto and colleagues have introduced mutations into domain II of the poliovirus IRES, resulting in growth and neurovirulence phenotypes (19, 20, 49, 50). These phenotypes could be suppressed by two concurrent second-site mutations, one at different sites in domain II and the other always at nt 107 in the spacer region. Interestingly, the nt 107 suppressor mutation maps to the highly conserved octanucleotide described in Fig. 4. In contrast to these studies, the single mutation at the nt 103 locus, described here, was sufficient to change the growth and neurovirulence phenotypes of PV, and second-site suppressor mutations have not been observed.

    Mutations in a different part of the poliovirus IRES exert also phenotypes that covary with host range, translation, and pathogenesis. For example, it has been shown that a single attenuating mutation in domain V of the IRES elements of the Sabin PV vaccine strains correlates with reduced translational efficiencies and restricted growth in neuronal cells but not in HeLa cells (2, 28, 54, 55). In a different study, a host-range cell-dependent phenotype has been observed with PV1(M) in which domain V of the IRES was mutated by linker insertion and reversion (15). Specifically, some genetic variants in domain V were restricted in growth in neuroblastoma cells while growing normally in HeLa cells (15). It has been speculated that neuronal cells may be lacking, or contain a suboptimal supply of, a host factor necessary for translation of the mutated viral RNA. This factor may be in ample supply in HeLa cells. Experimental evidence supporting this hypothesis has been recently published (14).

    Mutations in domain V of the poliovirus IRES map some 377 nt downstream of the spacer region analyzed here (Fig. 1), and their effects may not be related to each other. Long distance interactions between these regions, however, cannot be ruled out.

    The large effect of the single nucleotide exchange, A103G, on translation in vitro, replication in neuronal cells at elevated temperatures, and virulence in CD155 tg mice is astounding, as these phenotypes are likely to relate to the same single base locus. Does the A103 residue in the spacer interact directly or indirectly (bridged by proteins) with elements of the designated IRES? One possibility is that the mutations alter the interaction of this region with a translation factor. Alternatively, the mutation at position 102/103 may influence the stability of neighboring IRES structures, resulting in an inefficient interaction of cell type-specific factors and the IRES. If so, the spacer may be a functional element of the IRES that has been ignored simply because of the assays used in studying mutations in this region of the viral genome. Indeed, the use of non-neuronal-based assays for characterization of phenotypic properties of mutated poliovirus strains might have precluded in the past the identification of viral determinants that might profoundly affect the phenotype of poliovirus (38, 56). Finally, since the nucleotides 102 and 103 are localized near the cloverleaf, the possibility cannot be excluded that a mutation at this locus might also modulate cloverleaf activity. Mutations in the cloverleaf have been shown to influence not only genome replication but also viral protein synthesis (51). The mutations studied here might also affect not only the viral translation but also viral RNA replication.

    In summary, our results show that the mutation of a conserved nucleotide localized in the region between the cloverleaf and the IRES in the 5'NTR strongly influences the biological properties of poliovirus. Hence, it will be interesting to determine the contribution of other conserved nucleotides in this region to poliovirus pathogenesis.

    ACKNOWLEDGMENTS

    We thank Steffen Mueller for illuminating discussions and Alex Kenigsberg and Edison Mejia for expert technical assistance.

    This work was supported by NIH grants AI15122 and A132100. N. DeJesus is supported by NIH Training grant 5T32CA09176-27 as well as a Medical Scientist Training grant.

    REFERENCES

    Agol, V. I. 2002. Picornavirus genome: an overview, p. 127-148. In B. L. Semler and E. Wimmer (ed.), Molecular biology of picornaviruses. ASM Press, Washington, D.C.

    Agol, V. I., S. G. Drozdov, T. A. Ivannikova, M. S. Kolesnikova, M. B. Korolev, and E. A. Tolskaya. 1989. Restricted growth of attenuated poliovirus strains in cultured cells of a human neuroblastoma. J. Virol. 63:4034-4038.

    Andino, R., G. E. Rieckhof, and D. Baltimore. 1990. A functional ribonucleoprotein complex forms around the 5' end of poliovirus RNA. Cell 63:369-380.

    Bellmunt, A., G. May, R. Zell, P. Pring-Akerblom, W. Verhagen, and A. Heim. 1999. Evolution of poliovirus type I during 5.5 years of prolonged enteral replication in an immunodeficient patient. Virology 265:178-184.

    Biedler, J. L., L. Helson, and B. A. Spengler. 1973. Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res. 33:2643-2652.

    Brown, B., M. S. Oberste, K. Maher, and M. A. Pallansch. 2003. Complete genomic sequencing shows that polioviruses and members of human enterovirus species C are closely related in the noncapsid coding region. J. Virol. 77:8973-8984.

    Cello, J., A. V. Paul, and E. Wimmer. 2002. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science 297:1016-1018.

    Cuconati, A., A. Molla, and E. Wimmer. 1998. Brefeldin A inhibits cell-free, de novo synthesis of poliovirus. J. Virol. 72:6456-6464.

    Dorner, A. J., L. F. Dorner, G. R. Larsen, E. Wimmer, and C. W. Anderson. 1982. Identification of the initiation site of poliovirus polyprotein synthesis. J. Virol. 42:1017-1028.

    Flanegan, J., R. Pettersson, V. Ambros, M. Hewlett, and D. Baltimore. 1977. Covalent linkage of a protein to a defined nucleotide sequence at the 5'-terminus of virion and replicative intermediate RNAs of poliovirus. Proc. Natl. Acad. Sci. USA 74:961-965.

    Gromeier, M., L. Alexander, and E. Wimmer. 1996. Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. Proc. Natl. Acad. Sci. USA 93:2370-2375.

    Gromeier, M., B. Bossert, M. Arita, A. Nomoto, and E. Wimmer. 1999. Dual stem loops within the poliovirus internal ribosomal entry site control neurovirulence. J. Virol. 73:958-964.

    Gromeier, M., and A. Nomoto. 2002. Determinants of poliovirus pathogenesis, p. 367-379. In B. L. Selmer and E. Wimmer (ed.), Molecular biology of picornaviruses. ASM Press, Washington, D.C.

    Guest, S., E. Pilipenko, K. Sharma, K. Chumakov, and R. P. Roos. 2004. Molecular mechanisms of attenuation of the Sabin strain of poliovirus type 3. J. Virol. 78:11097-11107.

    Haller, A. A., S. R. Stewart, and B. L. Semler. 1996. Attenuation stem-loop lesions in the 5' noncoding region of poliovirus RNA: neuronal cell-specific translation defects. J. Virol. 70:1467-1474.

    Hellen, C. U. T., and E. Wimmer 1995. Enterovirus genetics, p. 25-72. In H. A. Rotbart (ed.), Human enterovirus infections. ASM Press, Washington, D.C.

    Hughes, P. J., D. M. Evans, P. D. Minor, G. C. Schild, J. W. Almond, and G. Stanway. 1986. The nucleotide sequence of a type 3 poliovirus isolated during a recent outbreak of poliomyelitis in Finland. J. Gen. Virol. 67:2093-2102.

    Hyypia, T., T. Hovi, N. Knowles, and G. Stanway. 1997. Classification of enteroviruses based on molecular and biological properties. J. Gen. Virol. 78:1-11.

    Ishii, T., K. Shiroki, D. H. Hong, T. Aoki, Y. Ohta, S. Abe, S. Hashizume, and A. Nomoto. 1998. A new internal ribosomal entry site 5' boundary is required for poliovirus translation initiation in a mouse system. J. Virol. 72:2398-2405.

    Ishii, T., K. Shiroki, A. Iwai, and A. Nomoto. 1999. Identification of a new element for RNA replication within the internal ribosome entry site of poliovirus RNA. J. Gen. Virol. 80:917-920.

    Iwasaki, A., R. Welker, S. Mueller, M. Linehan, A. Nomoto, and E. Wimmer. 2002. Immunofluorescence analysis of poliovirus receptor expression in Peyer's patches of humans, primates, and CD155 transgenic mice: implications for poliovirus infection. J. Infect. Dis. 186:585-592.

    Jang, S. K., M. V. Davies, R. J. Kaufman, and E. Wimmer. 1989. Initiation of protein synthesis by internal entry of ribosomes into the 5' nontranslated region of encephalomyocarditis virus RNA in vitro. J. Virol. 63:1651-1660.

    Jang, S. K., H.-G. Kr?usslich, M. J. H. Nicklin, G. M. Duke, A. C. Palmenberg, and E. Wimmer. 1988. A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J. Virol. 62:2636-2643.

    Kitamura, N., B. L. Semler, P. G. Rothberg, G. R. Larsen, C. J. Adler, A. J. Dorner, E. A. Emini, R. Hanecak, J. Lee, S. van der Werf, C. W. Anderson, and E. Wimmer. 1981. Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature 291:547-553.

    Koike, S., C. Taya, T. Kurata, S. Abe, I. Ise, H. Yonekawa, and A. Nomoto. 1991. Transgenic mice susceptible to poliovirus. Proc. Natl. Acad. Sci. USA 88:951-955.

    Korotkova, E. A., R. Park, E. A. Cherkasova, G. Y. Lipskaya, K. M. Chumakov, E. V. Feldman, O. M. Kew, and V. I. Agol. 2003. Retrospective analysis of a local cessation of vaccination against poliomyelitis: a possible scenario for the future. J. Virol. 77:12460-12465.

    La Monica, N., C. Meriam, and V. R. Racaniello. 1986. Mapping of sequences required for mouse neurovirulence of poliovirus type 2 Lansing. J. Virol. 57:515-525.

    La Monica, N., and V. R. Racaniello. 1989. Differences in replication of attenuated and neurovirulent poliovirus in human neuroblastoma cell line SH-SY5Y. J. Virol. 63:2357-2360.

    Lee, Y., A. Nomoto, B. Detjen, and E. Wimmer. 1977. The genome-linked protein of picornaviruses. I. A protein covalently linked to poliovirus genome RNA. Proc. Natl. Acad. Sci. USA 74:59-63.

    Minor, P. 1997. Poliovirus, p. 555-574. In N. Nathanson (ed.), Viral pathogenesis. Lippincott-Raven, Philadelphia, Pa.

    Mirzayan, C. M., and E. Wimmer. 1992. Genetic analysis of an NTP-binding motif in poliovirus polypeptide 2C. Virology 189:547-555.

    Molla, A., A. V. Paul, and E. Wimmer. 1991. Cell-free, de novo synthesis of poliovirus. Science 254:1647-1651.

    Mueller, S., E. Wimmer, and J. Cello. 2005. Poliovirus and poliomyelitis: a tale of guts, brains, and an accidental event. Virus Res. 111:175-193.

    Oberste, M. S., K. Maher, D. R. Kilpatrick, and M. A. Pallansch. 1999. Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. J. Virol. 73:1941-1948.

    Oberste, M. S., K. Maher, and M. A. Pallansch. 1998. Molecular phylogeny of all human enterovirus serotypes based on comparison of sequences at the 5' end of the region encoding VP2. Virus Res. 58:35-43.

    Palmenberg, A., and J. Y. Sgro. 2002. Alignments and comparative profiles of Picornavirus genera, p. 149-155. In B. L. Semler and E. Wimmer (ed.), Molecular biology of picornaviruses. ASM Press, Washington, D.C.

    Parsley, T. B., J. S. Towner, L. B. Blyn, E. Ehrenfeld, and B. L. Semler. 1997. Poly(rC) binding protein 2 forms a ternary complex with the 5'-terminal sequences of poliovirus RNA and the viral 3CD proteinase. RNA 3:1124-1134.

    Pelletier, J., M. E. Flynn, G. Kaplan, V. R. Racaniello, and N. Sonenberg. 1988. Mutational analysis of upstream AUG codons of poliovirus RNA. J. Virol. 62:4486-4492.

    Pelletier, J., G. Kaplan, V. R. Racaniello, and N. Sonenberg. 1988. Cap-independent translation of poliovirus mRNA is conferred by sequence elements within the 5'-noncoding region. Mol. Cell. Biol. 8:1103-1112.

    Pelletier, J., and N. Sonenberg. 1989. Internal binding of eukaryotic ribosomes on poliovirus RNA: translation in Hela cell extracts. J. Virol. 63: 441-444.

    Pincus, S. E., D. C. Diamond, E. A. Emini, and E. Wimmer. 1986. Guanidine-selected mutants of poliovirus: mapping of point mutations to polypeptide 2C. J. Virol. 57:638-646.

    P?yry, T., L. Kinnunen, and T. Hovi. 1992. Genetic variation in vivo and proposed functional domains of the 5' noncoding region of poliovirus RNA. J. Virol. 66:5313-5319.

    Racaniello, V. R., and D. Baltimore. 1981. Molecular cloning of poliovirus cDNA and determination of the complete nucleotide sequence of the viral genome. Proc. Natl. Acad. Sci. USA 78:4887-4891.

    Reed, L. J., and M. Muench. 1938. A simple method for estimating fifty percent endpoints. Am. J. Hyg. 27:493-497.

    Ren, R., F. Costantini, E. J. Gorgacz, J. J. Lee, and V. R. Racaniello. 1990. Transgenic mice expressing a human poliovirus receptor: a new model for poliomyelitis. Cell 63:353-362.

    Rezapkin, G. V., K. M. Chumakov, Z. Lu, Y. Ran, E. M. Dragunsky, and I. S. Levenbook. 1994. Microevolution of Sabin 1 strain in vitro and genetic stability of oral poliovirus vaccine. Virology 202:370-378.

    Rezapkin, G. V., L. Fan, D. M. Asher, M. R. Fibi, E. M. Dragunsky, and K. M. Chumakov. 1999. Mutations in Sabin 2 strain of poliovirus and stability of attenuation phenotype. Virology 258:152-160.

    Rezapkin, G. V., L. P. Norwood, R. E. Taffs, E. M. Dragunsky, I. S. Levenbook, and K. M. Chumakov. 1995. Microevolution of type 3 Sabin strain of poliovirus in cell cultures and its implications for oral poliovirus vaccine quality control. Virology 211:377-384.

    Shiroki, K., T. Ishii, T. Aoki, M. Kobashi, S. Ohta, and A. Nomoto. 1995. A new cis-acting element for RNA replication within the 5' noncoding region of poliovirus type 1 RNA. J. Virol. 69:6825-6832.

    Shiroki, K., T. Ishii, T. Aoki, Y. Ota, W. X. Yang, T. Komatsu, Y. Ami, M. Arita, S. Abe, S. Hashizume, and A. Nomoto. 1997. Host range phenotype induced by mutations in the internal ribosomal entry site of poliovirus RNA. J. Virol. 71:1-8.

    Simoes, E. A. F., and P. Sarnow. 1991. An RNA hairpin at the extreme 5' end of the poliovirus RNA genome modulates viral translation in human cells. J. Virol. 65:913-921.

    Stanway, G., P. J. Hughes, R. C. Mountford, P. Reeve, P. D. Minor, G. C. Schild, and J. W. Almond. 1984. Comparison of the complete nucleotide sequences of the genomes of the neurovirulent poliovirus P3/Leon/37 and its attenuated Sabin vaccine derivative P3/Leon 12a1b Proc. Natl. Acad. Sci. USA 81:1539-1543.

    Supanaranond, K., N. Takeda, and S. Yamazaki. 1992. The complete nucleotide sequence of a variant of coxsackievirus A24, an agent causing acute hemorrhagic conjunctivitis. Virus Genes 6:149-158.

    Svitkin, Y. V., S. V. Maslova, and V. I. Agol. 1985. The genomes of attenuated and virulent poliovirus strains differ in their in vitro translation efficiencies. Virology 147:243-252.

    Svitkin, Y. V., T. Pestova, S. V. Maslova, and V. I. Agol. 1988. Point mutations modify the response of poliovirus RNA to a translation initiation factor: a comparison of neurovirulent and attenuated strains. Virology 166:394-404.

    Trono, D., R. Andino, and D. Baltimore. 1988. An RNA sequence of hundreds of nucleotides at the 5' end of poliovirus RNA is involved in allowing viral protein synthesis. J. Virol. 62:2291-2299.

    van der Werf, S., J. Bradley, E. Wimmer, F. W. Studier, and J. J. Dunn. 1986. Synthesis of infectious poliovirus RNA by purified T7 RNA polymerase. Proc. Natl. Acad. Sci. USA 78:2330-2334.

    Wimmer, E., C. U. T. Hellen, and X. M. Cao. 1993. Genetics of poliovirus. Annu. Rev. Genet. 27:353-436.

    Xiang, W., K. S. Harris, L. Alexander, and E. Wimmer. 1995. Interaction between the 5'-terminal cloverleaf and 3AB/3CDpro of poliovirus is essential for RNA replication. J. Virol. 69:3658-3667.

    Yogo, Y., and E. Wimmer. 1972. Polyadenylic acid at the 3'-terminus of poliovirus RNA. Proc. Natl. Acad. Sci. USA 69:1877-1882.

    Zhang, S., and V. R. Racaniello. 1997. Expression of the poliovirus receptor in intestinal epithelial cells is not sufficient to permit poliovirus replication in the mouse gut. J. Virol. 71:4915-4920.(Nidia DeJesus, David Fran)
    婵犵數濮烽弫鎼佸磿閹寸姴绶ら柦妯侯棦濞差亝鍋愰悹鍥皺椤︻厼鈹戦悩缁樻锭婵炲眰鍊濋、姘舵焼瀹ュ棛鍘卞┑鐐村灥瀹曨剟寮搁妶鍡愪簻闁冲搫鍟崢鎾煛鐏炲墽鈽夐柍钘夘樀瀹曪繝鎮欏顔介獎闂備礁鎼ˇ顐﹀疾濠婂吘娑㈠礃椤旇壈鎽曞┑鐐村灦鑿ら柡瀣叄閻擃偊宕堕妸锕€鐨戦梺绋款儐閹歌崵绮嬮幒鏂哄亾閿濆簼绨介柛鏃撶畱椤啴濡堕崱妤€娼戦梺绋款儐閹瑰洭寮诲☉銏″亹鐎规洖娲㈤埀顒佸笚娣囧﹪宕f径濠傤潓闂佸疇顫夐崹鍨暦閸洖鐓橀柣鎰靛墰娴滄瑩姊虹拠鏌ヮ€楃紒鐘茬Ч瀹曟洟宕¢悙宥嗙☉閳藉濮€閻橀潧濮︽俊鐐€栫敮鎺椝囬鐐村€堕柨鏃傜摂濞堜粙鏌i幇顒佲枙闁稿孩姊归〃銉╂倷閸欏鏋犲銈冨灪濡啫鐣烽妸鈺婃晣闁绘劙娼ч幖绋库攽閻樺灚鏆╅柛瀣█楠炴捇顢旈崱妤冪瓘闂佽鍨奸悘鎰洪鍕吅闂佺粯锚閸氣偓缂佹顦靛娲箰鎼达絿鐣甸梺鐟板槻椤戝鐣烽悽绋块唶婵犮埄浜濆Λ鍐极閸屾粎椹抽悗锝庝簻婵″ジ姊绘担鍛婃喐闁稿鍋ら獮鎰板箮閽樺鎽曢梺鍝勬储閸ㄥ綊鐛姀銈嗙厸闁搞儮鏅涘瓭婵犵鈧尙鐭欓柡宀嬬秮婵偓闁宠桨鑳舵禒鈺冪磽閸屾氨孝闁挎洦浜悰顔界節閸ャ劍娅㈤梺缁樓圭亸娆撴偪閳ь剚淇婇悙顏勨偓鏍箰妤e啫纾婚柣鏂挎憸椤╃兘鏌熼幍顔碱暭闁抽攱鍨块弻娑㈡晜鐠囨彃绗岄梺鑽ゅ枑閸f潙煤椤忓嫀褔鏌涢妷顔惧帥婵炶偐鍠栧娲礃閸欏鍎撻梺鐟板暱濮橈妇鎹㈠鑸碘拻濞达絽鎳欒ぐ鎺戝珘妞ゆ帒鍊婚惌娆撴煙閻戞﹩娈曢柛濠傜仛閵囧嫰寮崹顔规寖缂佺偓鍎抽妶鎼佸蓟閿熺姴绀冮柕濞垮劗閸嬫挾绮欓幐搴㈢槑濠电姷鏁告慨顓㈠箯閸愵喖绀嬮柛顭戝亞閺夊綊鏌f惔銏╁晱闁哥姵鐗犻幃銉╂偂鎼达絾娈惧┑顔姐仜閸嬫挸鈹戦埄鍐憙妞わ附濞婇弻娑㈠箻閺夋垹浠哥紓浣虹帛缁嬫捇鍩€椤掍胶鈯曞畝锝呮健閹本绻濋崑鑺ユ閹晠宕f径瀣瀾闂備浇妗ㄧ欢锟犲闯閿濆鈧線寮撮姀鈩冩珕闂佽姤锚椤︿粙鍩€椤掍胶鈽夐柍瑙勫灴閺佸秹宕熼锛勬崟濠电姭鎷冮崨顔界彧缂備緡鍠楅悷锔炬崲濠靛鐐婇柕濞у啫绠版繝鐢靛О閸ㄧ厧鈻斿☉銏℃櫇闁靛牆顦Ч鏌ユ煛閸モ晛鏋戦柛娆忕箻閺岋綁鎮㈤悡搴濆枈濠碘槅鍨崑鎾绘⒒娴h姤銆冪紒鈧担铏圭煋闁圭虎鍠楅崑鈺傜節闂堟侗鍎忕紒鈧崘鈹夸簻妞ゆ挾鍠庨悘锝夋煙鐎电ǹ鍘存慨濠勭帛閹峰懐绮电€n亝鐣伴梻浣告憸婵敻骞戦崶褏鏆︽繝闈涳功閻も偓濠电偞鍨兼ご鎼佸疾閿濆洨纾介柛灞剧懅閸斿秴鐣濋敐鍛仴闁糕斂鍨藉顕€宕奸悢鍝勫箺闂備胶鎳撻顓㈠磿閹寸偟鐟规繛鎴欏灪閻撴洟鏌¢崒姘变虎闁哄棴缍侀弻鈥崇暆鐎n剛鐦堥悗瑙勬礃鐢帡锝炲┑瀣垫晣闁绘﹢娼ч獮鈧紓鍌氬€搁崐鐑芥倿閿曞倶鈧啴宕ㄥ銈呮喘閺屽棗顓奸崨顖氬Е婵$偑鍊栫敮鎺楀窗濮橆兗缂氶柟閭﹀枤绾惧吋銇勯弮鍥т汗缂佺姴顭烽弻銊モ攽閸繀妲愰梺杞扮閸熸潙鐣烽幒鎴僵闁告鍋為幉銏ゆ⒒娴h棄鍚瑰┑鐐╁亾缂傚倸鍊归懝楣冨煝瀹ュ鏅查柛銉㈡櫇閻撳姊洪崜鑼帥闁哥姵鎹囬崺鈧い鎺嶇缁楁帗銇勯锝囩疄妞ゃ垺锕㈤幃鈺咁敃閿濆孩缍岄梻鍌氬€风欢姘缚瑜嶇叅闁靛牆鎮垮ú顏勎╅柍杞拌兌閸旓箑顪冮妶鍡楃瑨闁稿妫濆銊╂偋閸垻顔曟繝銏f硾椤戝洤煤鐎电硶鍋撶憴鍕8闁搞劏濮ゆ穱濠囧醇閺囩偟鍊為梺闈浨归崕鐑樺閺囥垺鐓熼柣鏂挎憸閻苯顭胯椤ㄥ牓寮鍢夋棃宕崘顏嗏棨濠电姰鍨奸崺鏍礉閺嶎厼纾婚柨婵嗩槹閻撴洟鏌曟径妯虹仩妞も晩鍓欓埥澶愬箻閻熸壆姣㈢紓浣介哺鐢岣胯箛娑樜╃憸蹇涙偩婵傚憡鈷戠憸鐗堝俯濡垵鈹戦悙鈺佷壕闂備浇顕栭崰妤冨垝閹捐绠板┑鐘插暙缁剁偛顭跨捄铏圭伇婵﹦鍋撶换婵嬫偨闂堟稐绮跺銈嗘处閸樹粙骞堥妸锔哄亝闁告劑鍔嶅Σ顒勬⒑閸濆嫮鈻夐柛妯恒偢瀹曞綊宕掗悙瀵稿帾婵犵數鍋熼崑鎾斥枍閸℃稒鐓曢悗锝冨妼婵″ジ妫佹径鎰叆婵犻潧妫欓崳褰掓煛閸℃瑥鏋戝ǎ鍥э躬椤㈡稑顫濋崡鐐╁徍婵犳鍠栭敃銉ヮ渻娴犲鈧線寮撮姀鈩冩珳闂佺硶鍓濋悷锕傤敇婵犳碍鈷掑ù锝堟鐢盯鏌熺喊鍗炰簽闁瑰箍鍨归埞鎴犫偓锝庡墮缁侊箓鏌f惔顖滅У闁哥姵鐗滅划濠氭晲閸℃瑧鐦堟繝鐢靛Т閸婃悂顢旈锔界厵闁哄鍋勬慨鍌涙叏婵犲啯銇濇鐐村姈閹棃鏁愰崒娑辨綌闂傚倷绀侀幖顐︽偋濠婂牆绀堥柣鏃堫棑閺嗭箓鏌i悢绋款棎闁割偒浜弻娑㈠即閵娿儱瀛e┑鐐存綑鐎氼剟鈥旈崘顔嘉ч柛鈩冾殘閻熸劙姊虹紒妯洪嚋缂佺姵鎸搁锝夊箮缁涘鏅滈梺鍓插亞閸犳捇宕㈤柆宥嗏拺闁荤喓澧楅幆鍫㈢磼婢跺缍戦柣锝囨暬瀹曞崬鈽夊▎鎴濆笚闁荤喐绮嶇划鎾崇暦濠婂喚娼╂い鎺戭槹閸嶇敻姊洪棃娴ュ牓寮插⿰鍫濈;闁稿瞼鍋為悡銉╂煟閺傛寧鎯堢€涙繈鏌i悢鍝ユ嚂缂佺姵鎹囬悰顕€寮介鐐殿啇濡炪倖鎸鹃崑鐔哥椤栨粎纾藉ù锝嗗絻娴滅偓绻濋姀锝嗙【闁愁垱娲濋妵鎰板箳閹寸媭妲梻浣呵圭换妤呭磻閹邦兘鏋旈柕鍫濐槹閳锋垹绱撴担璐細缂佺姵鐗犻弻锝夊煛婵犲倻浠╅梺浼欑悼閸忔﹢寮幘缁樺亹闁肩⒈鍓﹀Σ浼存⒒娴h棄浜归柍宄扮墦瀹曟粌顫濇0婵囨櫓闂佺鎻梽鍕煕閹达附鍋i柛銉岛閸嬫捇鎼归銈勭按闂傚倷绀侀幉锟犲蓟閵婏富娈介柟闂寸閻撴繈鏌熼幑鎰靛殭缂佺媴缍侀弻锝夊箛椤撶喓绋囧銈呭閹告悂鍩為幋锔藉亹閻犲泧鍐х矗闂備礁鎽滈崳銉╁垂閸洜宓侀柛鈩冪☉绾惧吋鎱ㄩ敐搴″箹缂傚秴锕獮鍐煛閸涱厾顔岄梺鍦劋缁诲倹淇婇柨瀣瘈闁汇垽娼цⅴ闂佺ǹ顑嗛幑鍥蓟閻斿皝鏋旈柛顭戝枟閻忔挾绱掓ィ鍐暫缂佺姵鐗犲濠氭偄鐞涒€充壕闁汇垻娅ラ悷鐗堟瘎闂佽崵鍠愮划搴㈡櫠濡ゅ懏鍋傞柨鐔哄Т閽冪喐绻涢幋娆忕仼缂佺姵濞婇弻锟犲磼濮樿鲸鐨戦梺鍝勵儏閹冲酣鍩為幋锔藉€烽柛娆忣槸濞咃綁姊绘担绋跨盎缂佽尙鍋撶粚杈ㄧ節閸パ咁啋濡炪倖妫佹慨銈呪枍閵忋倖鈷戦悹鎭掑妼濞呮劙鏌熼崙銈嗗

   闂傚倷娴囬褍霉閻戣棄鏋佸┑鐘宠壘绾捐鈹戦悩鍙夋悙缂佹劖顨婇弻锟犲炊閳轰焦鐏侀梺宕囨嚀缁夋挳鍩為幋锔藉亹闁告瑥顦伴幃娆忊攽閳藉棗浜濋柨鏇樺灲瀵鈽夐姀鐘栥劑鏌曡箛濠傚⒉闁绘繃鐗犻幃宄扳堪閸愩劎鐩庨梺鐟板殩閹凤拷  闂傚倸鍊搁崐鐑芥嚄閼哥數浠氱紓鍌欒兌缁垶銆冮崨鏉戠厺鐎广儱顦崡鎶芥煏韫囨洖校闁诲寒鍓熷铏圭磼濡搫顫庨梺绋跨昂閸婃繂鐣烽弴鐐垫殕闁告洦鍓涢崢浠嬫⒑闁稑宓嗘繛浣冲嫭娅犳い鏂款潟娴滄粓骞栭幖顓炵仭閻庢熬鎷�  闂傚倸鍊峰ù鍥х暦閸偅鍙忛柡澶嬪殮濞差亜围闁搞儻绲芥禍鐐叏濡厧甯堕柣蹇ラ檮閵囧嫰濮€閿涘嫭鍣板Δ鐘靛仜椤戝寮崘顔肩劦妞ゆ帒鍊婚惌鍡涙煕閺囥劌鐏¢柣鎾跺枑娣囧﹪顢涘┑鎰缂備浇灏畷鐢垫閹炬剚鍚嬮煫鍥ㄦ煥椤忥拷  闂傚倸鍊搁崐鐑芥嚄閸洖绠犻柟鎹愵嚙鐟欙箓鎮楅敐搴″闁搞劍绻堥獮鏍庨鈧俊鑲╃棯閹佸仮闁哄本娲樼换娑㈡倷椤掍胶褰呴梻浣告啞椤ㄥ棙绻涙繝鍥ц摕闁斥晛鍟欢鐐烘倵閿濆簼绨介柛鏃偳归埞鎴﹀煡閸℃浼堥梺鐟板殩閹凤拷   闂傚倸鍊搁崐宄懊归崶顒婄稏濠㈣泛顑囬々鎻捗归悩宸剰缂佲偓婢跺备鍋撻崗澶婁壕闂佸憡娲﹂崜娆愮闁秵鈷戦梻鍫熶腹濞戙垹宸濇い鏍ュ€楁惔濠傗攽閻樺灚鏆╅柛瀣☉铻炴繛鍡樻尭缁€澶愭煛瀹ュ骸浜炲☉鎾崇У缁绘盯宕卞Ο璇查瀺闂佺粯鎸诲ú妯兼崲濞戙垹骞㈡俊顖氬悑閸n參鏌f惔銏㈠暡闁瑰嚖鎷�   闂傚倸鍊搁崐椋庣矆娓氣偓楠炲鍨鹃幇浣圭稁缂傚倷鐒﹁摫闁告瑥绻橀弻鐔虹磼閵忕姵鐏堥梺娲诲幗椤ㄥ﹪寮诲☉銏犵労闁告劦浜栧Σ鍫㈢磽閸屾瑨顔夐柡鍛█瀵鎮㈢喊杈ㄦ櫖濠电姴锕ら崰姘跺汲椤撶儐娓婚柕鍫濆暙閸旂敻鏌熼崙銈嗗