婵犵數濮烽。钘壩i崨鏉戠;闁规崘娉涚欢銈呂旈敐鍛殲闁稿顑夐弻锝呂熷▎鎯ф閺夆晜绻堝铏规崉閵娿儲鐝㈤梺鐟板殩閹凤拷
闂傚倸鍊搁崐椋庣矆娓氣偓楠炴牠顢曢敂钘変罕闂婎偄娲︾粙鎴犵玻濡ゅ懎绠规繛锝庡墮婵″ジ鏌涢妸銉モ偓鍧楀蓟閵娾晜鍋嗛柛灞剧☉椤忥拷: 闂傚倷娴囬褍霉閻戣棄鏋佸┑鐘宠壘绾捐鈹戦悩鍙夋悙缂佹劖顨婇弻锟犲炊閳轰焦鐏侀梺宕囨嚀缁夋挳鍩為幋锔藉亹闁告瑥顦伴幃娆忊攽閳藉棗浜濋柨鏇樺灲瀵鈽夐姀鐘栥劑鏌曡箛濠傚⒉闁绘繃鐗犻幃宄扳堪閸愩劎鐩庨梺鐟板殩閹凤拷 闂傚倸鍊搁崐椋庢濮橆兗缂氶柤濮愬€栫€氬鏌i弮鍌氬付缂佲偓婢舵劕绠规繛锝庡墮婵″ジ鏌涘顒傜Ш妤犵偞鐗曡彁妞ゆ巻鍋撻柣蹇e櫍閺屽秶绱掑Ο鑽ゎ槹闂佸搫琚崝鎴濐嚕椤掑嫬鍨傛い鏃囶潐鐎垫牗绻濋悽闈涗户闁靛棗顑夐獮蹇涙晸閿燂拷 闂傚倸鍊峰ù鍥х暦閸偅鍙忕€广儱顦粈鍐┿亜椤撶喎鐏i柣銉邯濮婄粯鎷呴崨濠冨創濡炪倖鍨甸崐鍨暦濠婂啠鏀介柛顐犲灮閻撴挻绻濋姀锝嗙【濠㈣泛娲畷鎴﹀箻缂佹ɑ娅滈柟鑲╄ˉ閳ь剙纾鎴犵磽閸屾瑦顦风紒韬插€濋獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鐑芥嚄閼哥數浠氭俊鐐€栭崹鐢稿疮閺夋垹鏆﹂柡鍥ュ灪閻掕偐鈧箍鍎遍幊鎰版偩濞差亝鍊垫鐐茬仢閸旀碍銇勯敂璇茬仯闁汇儺浜iˇ褰掓煛鐏炲墽銆掑ù鐙呯畵閹瑩顢楅崒娑卞悋缂傚倸鍊烽懗鑸靛垔閹绢喖绠柨鐕傛嫹 闂傚倸鍊搁崐鐑芥嚄閸洏鈧焦绻濋崟顓狀槱婵炴潙鍚嬪ḿ娆戝閸ф鈷戞い鎺嗗亾缂佸鎸冲畷褰掑磼閻愬鍘搁梺鍛婂姂閸斿孩鏅跺☉銏$厽闁圭儤娲﹂崵娆愩亜椤撯剝纭堕柟鐟板閹煎綊宕烽婵堢濠电姷顣槐鏇㈠磿閹达箑绠柨鐕傛嫹 闂傚倸鍊搁崐鐑芥嚄閸撲焦鍏滈柛顐f礀閻ら箖鏌i幇顓犮偞闁哄绉归弻銊モ攽閸♀晜肖闂侀€炲苯鍘哥紒鑸佃壘閻g兘濡搁埡浣洪獓闂佺懓顕刊顓炍eú顏呪拺闁煎鍊曞瓭濠电偛鐪伴崐鏇$亽婵犵數濮村ú銈囩矆婢舵劖鐓ラ柣鏇炲€圭€氾拷 婵犵數濮烽弫鎼佸磻閻愬搫鍨傞柛顐f礀缁犱即鎮归崶褍鏂€缂傚倹纰嶇换娑㈠幢濡櫣浼囨繝娈垮枟婵炲﹪寮婚弴鐔风窞闁糕剝蓱閻濇梻绱撴担鎻掍壕閻庡厜鍋撻柛鏇ㄥ墮娴狀垶姊洪幖鐐插妧闁告洏鍔嶉悘鍡涙⒒娴e憡鍟炴俊顐e灴楠炲繘鏁撻敓锟� 闂傚倸鍊搁崐宄懊归崶顒€纾婚柟鎵閸嬨倝鏌¢崘銊у闁搞劌鍊搁湁闁稿繐鍚嬮崕妤呮煛娴e憡顥㈤柡灞诲姂閹倝宕掑☉姗嗕紦 闂傚倸鍊峰ù鍥敋瑜忛埀顒佺▓閺呯姴鐣峰Ο鑽ょ瘈婵﹩鍘搁幐鍐⒑閸涘﹥澶勯柛鎾村哺瀹曪綀绠涘☉娆戝弳闂佺粯娲栭崐鍦偓姘炬嫹 婵犵數濮烽弫鎼佸磻閻愬搫鍨傞柛顐f礀缁犲綊鏌嶉崫鍕櫣闁稿被鍔戦弻锝夊箻瀹曞洨妲忛梺鑽ゅ枑鐎氬牓寮崼婵嗙獩濡炪倖鎸炬刊顓炍eú顏呪拺闁煎鍊曞瓭濠电偛鐪伴崐鏇$亽婵犵數濮村ú銈囩矆婢舵劖鐓ラ柣鏇炲€圭€氾拷 闂傚倸鍊搁崐椋庣矆娓氣偓楠炲鏁撻悩顔瑰亾閸愵厾鐤€婵炴垶岣块敍娑㈡⒑缁洖澧茬紒瀣灴瀵憡绗熼埀顒勫蓟閻旂厧绠查柟浼存涧濞堫厾绱撴担鍝勑i柛銊ユ健瀵鏁撻悩鑼槹濡炪倖鍔х徊鍧椼€呮导瀛樷拺闁告縿鍎卞▍鎰版煙閸戙倖瀚�
婵犵數濮烽弫鎼佸磿閹寸姴绶ら柦妯侯棦濞差亝鏅滈柣鎰靛墮鎼村﹪姊虹粙鎸庢拱缂佸鎹囬妴鍛存倻閼恒儳鍙嗛梺缁樻礀閸婂湱鈧熬鎷�: 闂傚倸鍊搁崐椋庣矆娓氣偓楠炴牠顢曢敃鈧壕褰掓煟閹达絾顥夌痪顓涘亾闂備礁鎲¢崝鏇炍熸繝鍌樷偓鎺撶節濮橆厾鍙嗛梺缁樻礀閸婂湱鈧熬鎷� 闂傚倸鍊峰ù鍥х暦閸偅鍙忛柡澶嬪殮濞差亜围闁搞儻绲芥禍鐐叏濡厧甯堕柣蹇ラ檮閵囧嫰濮€閿涘嫭鍣伴梺杞扮劍閹瑰洭寮幘缁樻櫢闁跨噦鎷� 闂傚倸鍊峰ù鍥х暦閻㈢ǹ绐楅柟鎵閸嬶繝鏌曟径鍫濆壔婵炴垶菤濡插牓鏌曡箛鏇炐ラ柨娑欑洴濮婅櫣鎹勯妸銉︾彚闂佺懓鍤栭幏锟� 闂傚倸鍊烽悞锕傛儑瑜版帒鏄ラ柛鏇ㄥ灠閸ㄥ倿姊洪鈧粔鐢稿磻閵堝鐓涢柛銉e劚閻忣亪鏌涙惔鈽呰含闁哄被鍔戦幃銈夊磼濞戞﹩浼� 闂傚倸鍊搁崐鐑芥倿閿曞倹鍎戠憸鐗堝笒绾惧綊鏌¢崶鈺佹瀾婵炲懐濞€閺岋箑螣娓氼垱鈻撳┑鐐插悑閻楃娀寮婚妸鈺傚亞闁稿本绋戦锟� 闂傚倸鍊搁崐鐑芥倿閿曞倹鍎戠憸鐗堝笒绾惧潡鏌涘Δ鍐х闯婵炲樊浜滄儫闂佹寧妫佸Λ鍕嚕閸ф鈷戦悹鎭掑妼濞呮劙鏌熼崙銈嗗 闂傚倸鍊搁崐鐑芥嚄閼哥數浠氱紓鍌欒兌缁垶銆冮崨瀛樺仼闁绘垼濮ら崑銊х磼鐎n偄顕滈柣搴墴濮婅櫣鎹勯妸銉︾彚闂佺懓鍤栭幏锟� 闂傚倸鍊搁崐鐑芥嚄閸洖纾块柣銏⑶圭壕濠氭煙閹规劦鍤欑紒鈧径鎰彄闁搞儯鍔嶇亸鐢告煛閸℃劕鈧繈寮婚妸鈺傚亞闁稿本绋戦锟� 闂傚倸鍊搁崐鐑芥嚄閸洏鈧焦绻濋崟顓狀槱婵炴潙鍚嬪ḿ娆戝鐟欏嫪绻嗛柕鍫濇噺閸e湱绱掗悩宕囧⒌闁哄被鍔戦幃銈夊磼濞戞﹩浼� 闂傚倸鍊搁崐宄懊归崶顒夋晪闁哄稁鍘肩粈鍌涚箾閸℃ɑ灏痪鎯ф健閺岋紕浠︾拠鎻掑闂佹眹鍊濈粻鏍蓟閵娾晜鍋嗛柛灞剧☉椤忥拷 闂傚倸鍊搁崐鐑芥嚄閼哥數浠氭俊鐐€栭崹鐢稿疮閺夋垹鏆﹂柡鍥ュ灩缁犵粯銇勯弮鍌滄憘婵☆偄鎳樺铏规崉閵娿儲鐝㈤梺鐟板殩閹凤拷 缂傚倸鍊搁崐鎼佸磹閹间礁纾圭紒瀣紩濞差亜围闁糕檧鏅滈鏃堟⒑瑜版帗锛熺紒璁圭節瀵偅绻濋崶銊у弳闂佺粯娲栭崐鍦偓姘炬嫹 婵犵數濮烽弫鎼佸磻閻愬搫鍨傞柛顐f礀缁犱即鏌涢锝嗙缁炬儳缍婇弻鈥愁吋鎼粹€崇闂佺粯甯掗悘姘跺Φ閸曨垰绠抽柟鎼灡閺侀箖鏌f惔銏㈠暡闁瑰嚖鎷� 闂傚倸鍊搁崐鐑芥嚄閸洖鍌ㄧ憸宥夘敋閿濆绠氶柤鍓插厸濮规姊洪崨濠傚Е闁哥姵鐗滅划鍫熷緞閹邦厾鍙嗛梺缁樻礀閸婂湱鈧熬鎷� 闂傚倸鍊搁崐鐑芥倿閿曗偓椤啴宕归鍛數婵炴挻鍩冮崑鎾搭殽閻愯尙绠婚柡浣规崌閺佹捇鏁撻敓锟� 婵犵數濮烽弫鍛婄箾閳ь剚绻涙担鍐叉搐绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏� 闂傚倸鍊搁崐鐑芥嚄閸洖鍌ㄧ憸搴ㄥ箚閺傚簱鍫柛顐g箘椤斿棝姊虹捄銊ユ珢闁瑰嚖鎷� 闂傚倸鍊峰ù鍥敋瑜忛幑銏ゅ箛椤撗勵啍闂婎偄娲︾粙鎴犵不椤栫偞鐓ラ柣鏇炲€圭€氾拷 闂傚倸鍊搁崐鐑芥倿閿曞倸绠栭柛顐f礀绾惧潡鏌ょ喊鍗炲闁活厽鐟╅弻鐔告綇閹呮В闂佽桨绀佸Λ婵嬪蓟閵娾晜鍋嗛柛灞剧☉椤忥拷 闂傚倸鍊峰ù鍥х暦閸偅鍙忛柡澶嬪殮濞差亜鐓涘ù锝囧劋濞堥箖姊洪崜鑼帥闁稿鎳庨埢宥夋偐缂佹ḿ鍙嗛梺缁樻礀閸婂湱鈧熬鎷� 闂傚倸鍊搁崐椋庣矆娓氣偓楠炴牠顢曢埛姘そ閺佸啴鍩€椤掆偓閻滃宕归瑙勭€婚梺瑙勫劤缁夋潙煤椤撱垹鏋侀柟鍓х帛閺呮悂鏌ㄩ悤鍌涘
婵犵數濮烽弫鎼佸磻閻愬搫鍨傞柛顐f礀缁犲綊鏌嶉崫鍕櫣闁稿被鍔戦弻銈吤圭€n偅鐝掗梺缁樺笒閿曨亪寮婚妸鈺傚亞闁稿本绋戦锟�: 闂傚倸鍊烽悞锕傛儑瑜版帒鏄ラ柛鏇ㄥ灠閸ㄥ倿姊洪鈧粔鐢稿磻閵堝鐓涢柛銉e劚閻忣亪鏌涙惔鈽呰含闁哄被鍔戦幃銈夊磼濞戞﹩浼� 闂傚倸鍊搁崐宄懊归崶褜娴栭柕濞炬櫆閸婂潡鏌ㄩ弴鐐测偓褰掑磻閿熺姵鐓ラ柡鍥殔娴滃墽鈧厜鍋撻柨婵嗘噺閸嬨儵鏌℃担瑙勫磳闁轰焦鎹囬弫鎾绘晸閿燂拷 闂傚倸鍊搁崐宄懊归崶顒夋晪闁哄稁鍘肩粈鍫熸叏濡潡鍝虹€规洘鐓¢弻娑㈠焺閸愵亖妲堥梺缁樺笒閻忔岸濡甸崟顖氱闁规惌鍨遍弫楣冩煟鎼淬垻鍟查柟鍑ゆ嫹 婵犵數濮烽弫鎼佸磻閻愬搫鍨傞柛顐f礀缁犲綊鏌嶉崫鍕櫣闁活厽顨婇弻宥堫檨闁告挻鐩崺鈧い鎺戝枤濞兼劙鏌熺喊鍗炰喊妤犵偛绻橀弫鎾绘晸閿燂拷 闂傚倸鍊搁崐椋庣矆娓氣偓楠炲鏁撻悩鍐蹭罕闂佺粯鍔樼亸娆撳汲閿曞倹鐓熼柕蹇婃嚉閸︻厾涓嶉柡宥庡幗閻撱儵鏌i弴鐐测偓鍦偓姘炬嫹 婵犵數濮烽弫鎼佸磻閻愬搫鍨傞柛顐f礀缁犱即鎮归崶褍鏂€缂傚倹纰嶇换娑㈠幢濡櫣浼囨繝娈垮枟婵炲﹪寮婚妸鈺傚亞闁稿本绋戦锟� 闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊椤剚鐩畷鐔碱敍濞戞ü缃曢梻浣告贡閸嬫挸顪冮崸妤€鏋佸〒姘e亾闁哄被鍔戦幃銈夊磼濞戞﹩浼� 濠电姷鏁告慨鐢割敊閺嶎厼绐楁俊銈呭閹冲矂姊绘担瑙勫仩闁告柨绻愰埢鏂库槈濠婂懍缃曢梻鍌欐祰濞夋洟宕抽敃鍌氱闁跨噦鎷� 闂傚倸鍊搁崐椋庣矆娓氣偓楠炴牠顢曢敃鈧壕鍦磼鐎n偓绱╂繛宸簻鍥撮梺鎼炲劵缁茶姤绂嶉崜褏妫柡澶嬵儥濡插綊鎮楀鐐 闂傚倸鍊搁崐鐑芥倿閿曞倸鍨傛繝闈涱儐閸婂潡鏌ㄩ弴鐐测偓鍛婎攰闂備胶绮崝妤呭极閸濄儳鐭嗗┑鐘叉处閻撱儵鏌i弴鐐测偓鍦偓姘炬嫹 婵犵數濮撮惀澶愬级鎼存挸浜炬俊銈勭劍閸欏繘鏌熺紒銏犳灈閻庢艾顦伴妵鍕箳閹存繍浠奸梺钘夊暟閸犳牠寮婚妸鈺傚亞闁稿本绋戦锟� 闂傚倸鍊搁崐鐑芥倿閿曞倸绠栭柛顐f礀绾惧潡鏌熺紒妯虹闁哄棴闄勬穱濠囶敍濞嗘帩鍔呭┑鐐茬毞閺呯娀寮婚妸鈺傚亞闁稿本绋戦锟� 婵犵數濮烽。顔炬閺囥垹纾绘繛鎴欏焺閺佸嫰鏌涢妷顔煎缂佹劖顨婇弻鐔煎箲閹伴潧娈梺鍛婂灩婵炩偓闁哄被鍔戦幃銈夊磼濞戞﹩浼� 闂傚倸鍊搁崐宄懊归崶顒€纾婚柟鎵閸嬨倝鏌¢崘銊у闁搞劌鍊块弻褑绠涢敐鍛凹濠电偛鎳愭繛鈧柡灞诲姂閹倝宕掑☉姗嗕紦 闂傚倸鍊搁崐宄懊归崶顒€纾婚柟鎵閸嬨倝鏌¢崘銊у闁搞劌鍊归妵鍕冀閵娧呯厒缂備胶濮靛Λ鍐蓟閵娾晜鍋嗛柛灞剧☉椤忥拷 闂傚倸鍊搁崐宄懊归崶顒€纾婚柟鎵閸嬨倝鏌¢崘銊у闁搞劌鍊块弻鐔封枔閸喗鐏撻梺鍛婎殕瀹€鎼佸蓟閵娾晜鍋嗛柛灞剧☉椤忥拷 闂傚倸鍊搁崐椋庣矆娓氣偓楠炴牠顢曢敃鈧壕褰掓偡濞嗗繐顏╅柛銊︽閺岋箑螣娓氼垱楔闂佸搫妫庨崐婵嬪蓟閵娾晜鍋嗛柛灞剧☉椤忥拷 闂傚倸鍊搁崐鐑芥嚄閸洖绠犻柟鎹愵嚙鐟欙箓鎮楅敐搴″闁搞劍绻堥獮鏍庨鈧俊鑲╃棯閹佸仮闁哄被鍔戦幃銈夊磼濞戞﹩浼� 闂傚倸鍊搁崐椋庣矆娓氣偓瀹曘儳鈧綆鈧叏缍侀獮鎺楀箻閸欐ḿ鐭掗梻浣哥秺濡法绮堟笟鈧畷娆撴偐缂佹ḿ鍙嗛梺缁樻礀閸婂湱鈧熬鎷�
当前位置: 首页 > 期刊 > 《新英格兰医药杂志》 > 2004年第22期 > 正文
编号:11305004
Prostate Cancers in Men with Low PSA Levels — Must We Find Them?
http://www.100md.com 《新英格兰医药杂志》

     Prostate cancer is the second leading cause of death from cancer among men in the United States. In the era before prostate-specific antigen (PSA) screening, most prostate cancers were identified at a stage (T2 or T3) that could not be cured. Today, with the widespread use of PSA screening, most prostate cancers are identified at an earlier stage, which can be treated effectively with surgical or nonsurgical approaches. Once PSA screening became widespread in the United States, the rate of death from prostate cancer declined — for example, in 1997 it fell below the rate recorded in 1986, a year in which PSA testing was rarely performed.1 Although the initial decline could have been the result of improved treatments or other population-screening effects (e.g., a misclassification artifact),2 it is difficult to believe that earlier detection has had no effect on the continued decline in mortality, given the 50 to 70 percent decline in the incidence of distant disease between 1986 and 1999 among men 50 years of age or older.3

    There is general agreement among clinicians that the PSA test has the highest predictive value for prostate cancer, that PSA screening can detect early-stage cancers, and that most cancers detected by PSA screening appear to be clinically important when their pathological characteristics are used as a surrogate for biologic potential. There is, however, disagreement as to what level of PSA should prompt a prostate biopsy. The controversy stems from the following: the use of higher PSA thresholds risks missing an important cancer until it is too late for a cure, whereas the use of lower PSA thresholds increases not only unnecessary biopsies but also the proportion of biopsies that identify clinically insignificant disease (disease that would not have been detected in the absence of screening). The use of a PSA threshold of 4.0 ng per milliliter for men over the age of 50 years has been accepted by most clinicians as striking a reasonable balance between these tradeoffs. However, information on the prevalence of biopsy-detectable prostate cancer among men with PSA values of 4.0 ng per milliliter or less and no other indication for biopsy (e.g., an abnormal prostate examination) is limited.

    In this issue of the Journal, Thompson et al.4 report the prevalence of prostate cancer among men in the control group of the Prostate Cancer Prevention Trial. During a seven-year period, none of the men in this analysis had PSA levels above 4.0 ng per milliliter or any abnormality on digital rectal examination. All participants underwent a prostate biopsy at the end of the study. Of almost 3000 men in the group, 15 percent had a prostate cancer on the end-of-study biopsy, and of these cancers, 15 percent were high grade (a Gleason score of 7 to 9). The prevalence of cancer increased with the PSA level, from 7 percent among men with PSA values of 0.5 ng per milliliter or less to 27 percent among men with PSA values of 3.1 to 4.0 ng per milliliter. Furthermore, the prevalence of high-grade disease also increased with the PSA level, from 13 percent when the PSA level was 0.5 ng per milliliter or less to 25 percent when the PSA level was 3.1 to 4.0 ng per milliliter. Given this report of the risk of prostate cancer — and the risk of high-grade disease — at PSA levels below the threshold of 4.0 ng per milliliter, which has traditionally been used to prompt prostate biopsy, should we now recommend lowering the threshold for biopsy?

    I believe not, for the following reasons. First, it should not be surprising that 10 to 27 percent of the men with PSA values of 4.0 ng per milliliter or less, who ranged in age from 62 to 91 years, were found to have prostate cancer in the study by Thompson et al. On the basis of the results of 5250 autopsies reported in the U.S. literature, the prevalence of prostate cancer was 15 to 60 percent among men 60 to 90 years of age and increased with age.5 Ninety percent of men 50 to 90 years of age have PSA values of 4.0 ng per milliliter or less.6 Thus, quite a few men with PSA levels of 4.0 ng per milliliter or less must harbor a prostate cancer.

    Although it would be desirable to detect the small proportion of high-grade cancers — cancers that are likely to be life threatening — in men with low PSA levels, the identification of such cancers will require the development of new biomarkers, because high-grade cancers actually produce less PSA than low-grade cancers, after correction for cancer volume.7 The increasing prevalence of high-grade cancer with increasing PSA levels reflects the finding that higher-grade cancers are more often larger in volume than low-grade cancers, and the PSA level is directly related to the volume of the cancer.7

    Second, prostate cancers detected at lower PSA levels are more likely to have a small volume (less than 0.5 ml) and to be low-grade8 and are thus more likely to represent clinically insignificant disease, because cancer volume and grade are surrogates for biologic potential.9 McNeal et al. found that only cancers that were much larger than 1 ml in volume and poorly differentiated were associated with metastatic disease.9 Furthermore, prostate cancers with a volume of less than 1 ml do not usually result in PSA levels above 4.0 ng per milliliter,10 so that the unexpected detection of cancer at lower PSA levels is more likely to identify disease for which treatment not only may be unnecessary but also may fail to improve survival.11 Thompson et al. could provide information about the estimated cancer volume in their population because the PSA density (PSA level divided by prostate volume) and the features of the cancer on biopsy (the grade, the number of cores with cancer, and the percentage of the core that is cancerous) are predictive of the cancer volume determined pathologically after surgery.12

    Third, there is no convincing evidence that, with contemporary therapy, men who are treated when their cancers are detected at PSA levels at or below 4.0 ng per milliliter have better outcomes than men who are treated when the PSA is slightly higher than 4.0 ng per milliliter. In short, detection of prostate cancer at a PSA threshold lower than 4.0 ng per milliliter has not been shown to improve the disease-free outcome. With a PSA level in the range of 2.6 to 6.0 ng per milliliter, younger men are more likely than older men to have curable prostate cancer13 and a disease-free outcome14 — observations that are probably driven by the fact that older men are more likely to have high-grade cancers. Hence, the weight of the evidence suggests that the detection of prostate cancer at younger ages should have a greater effect on the likelihood of being free from disease after treatment than would the detection of prostate cancer at a PSA level of 4.0 ng per milliliter or less.

    Fourth, in an investigation similar to that of Thompson et al., Gann et al. have shown that men with baseline PSA levels between 1.0 and 4.0 ng per milliliter are at significantly higher risk for a diagnosis of prostate cancer over the next 10 years than are men whose baseline PSA level is below 1.0 ng per milliliter.15 They found that a cutoff value of 3.3 ng per milliliter resulted in optimal sensitivity and specificity, but the gain was minimal as compared with that afforded by a cutoff value of 4.0 ng per milliliter. In addition, Morgan et al.16 have shown that the PSA cutoff value that results in 95 percent sensitivity (the detection of 95 percent of cancers) is close to 4.0 ng per milliliter for men between the ages of 50 and 70 years and 2.5 ng per milliliter for men in the fifth decade of life. Because most of the variability in PSA levels is due to benign prostate enlargement that occurs with age, and men below the age of 50 years are unlikely to have such enlargement, a threshold of 2.5 ng per milliliter seems reasonable for men below the age of 50 years.

    Gann et al.15 pointed out that the "dichotomization of PSA results into normal and abnormal obscures important information contained in levels below the usual cutoff." The data of Thompson et al. provide a framework for the risk assessment of men with PSA values of 4.0 ng per milliliter or less and should prompt careful consideration of the likelihood of cancer at these lower PSA levels in men at particularly high risk, such as those with a strong family history of the disease. Given that the risk of a clinically significant prostate cancer increases incrementally with PSA levels between 0 and 4 ng per milliliter, it makes sense to track the rate of rise in PSA values (the PSA velocity), which has previously been shown to correlate directly with the risk of cancer17 and was significantly associated with the risk of cancer in the current study.

    Finally, considering that the lifetime risk of death from prostate cancer is 3 percent and the lifetime risk of a diagnosis of prostate cancer is 16 percent, it is apparent that any approach that finds more cancers without quantifying the clinical significance of the detected disease will only increase overdiagnosis and overtreatment, as alluded to by Thompson et al. This, together with the absence of proof that PSA screening saves lives, should cause physicians to be circumspect about routinely recommending a prostate biopsy for men over the age of 50 years who have a PSA level of 4.0 ng per milliliter or less.

    Although the value of PSA screening remains controversial, men who present for periodic health examinations should be made aware of the availability of the PSA test, so that they can make an informed decision about the need for routine screening. The enthusiasm for screening in general in the United States suggests that most men will decide to be tested.18

    Source Information

    From the Department of Urology, Johns Hopkins School of Medicine, Baltimore.

    References

    Tarone RE, Chu KC, Brawley OW. Implications of stage-specific survival rates in assessing recent declines in prostate cancer mortality rates. Epidemiology 2000;11:167-170.

    Feuer EJ, Merrill RM, Hankey BF. Cancer surveillance series: interpreting trends in prostate cancer. II. Cause of death misclassification and the recent rise and fall in prostate cancer mortality. J Natl Cancer Inst 1999;91:1025-1032.

    Chu KC, Tarone RE, Freeman HP. Trends in prostate cancer mortality among black men and white men in the United States. Cancer 2003;97:1507-1516.

    Thompson IM, Pauler DK, Goodman PJ, et al. Prevalence of prostate cancer among men with a prostate-specific antigen level of 4.0 ng per milliliter. N Engl J Med 2004;350:2239-2246.

    Carter HB, Piantadosi S, Isaacs JT. Clinical evidence for and implications of the multistep development of prostate cancer. J Urol 1990;143:742-746.

    Smith DS, Catalona WJ, Herschman JD. Longitudinal screening for prostate cancer with prostate-specific antigen. JAMA 1996;276:1309-1315.

    Partin AW, Carter HB, Chan DW, et al. Prostate specific antigen in the staging of localized prostate cancer: influence of tumor differentiation, tumor volume and benign hyperplasia. J Urol 1990;143:747-752.

    Carter HB, Epstein JI, Chan DW, Fozard JL, Pearson JD. Recommended prostate-specific antigen testing intervals for the detection of curable prostate cancer. JAMA 1997;277:1456-1460.

    McNeal JE, Bostwick DG, Kindrachuk RA, Redwine EA, Freiha FS, Stamey TA. Patterns of progression in prostate cancer. Lancet 1986;1:60-63. [CrossRef][ISI][Medline]

    Brawn PN, Speights VO, Kuhl D, et al. Prostate-specific antigen levels from completely sectioned, clinically benign, whole prostates. Cancer 1991;68:1592-1599.

    Vis AN, Kranse R, Roobol M, van der Kwast TH, Schroder FH. Serendipity in detecting disease in low prostate-specific antigen ranges. BJU Int 2002;89:384-389.

    Epstein JI, Walsh PC, Carmichael M, Brendler CB. Pathologic and clinical findings to predict tumor extent of nonpalpable (stage T1c) prostate cancer. JAMA 1994;271:368-374.

    Carter HB, Epstein JI, Partin AW. Influence of age and prostate-specific antigen on the chance of curable prostate cancer among men with nonpalpable disease. Urology 1999;53:126-130.

    Khan MA, Han M, Partin AW, Epstein JI, Walsh PC. Long-term cancer control of radical prostatectomy in men younger than 50 years of age: update 2003. Urology 2003;62:86-91.

    Gann PH, Hennekens CH, Stampfer MJ. A prospective evaluation of plasma prostate-specific antigen for detection of prostatic cancer. JAMA 1995;273:289-294.

    Morgan TO, Jacobsen SJ, McCarthy WF, Jacobson DJ, McLeod DG, Moul JW. Age-specific reference ranges for prostate-specific antigen in black men. N Engl J Med 1996;335:304-310.

    Carter HB, Pearson JD, Metter EJ, et al. Longitudinal evaluation of prostate-specific antigen levels in men with and without prostate disease. JAMA 1992;267:2215-2220.

    Schwartz LM, Woloshin S, Fowler FJ Jr, Welch HG. Enthusiasm for cancer screening in the United States. JAMA 2004;291:71-78.(H. Ballentine Carter, M.D)
    濠电姷鏁搁崕鎴犲緤閽樺娲偐鐠囪尙顦┑鐘绘涧濞层倝顢氶柆宥嗙厱婵炴垵宕弸銈嗐亜閳哄啫鍘撮柡灞剧☉閳藉宕¢悙宸骄闂佸搫顦弲婊兾涢崘顔艰摕婵炴垶菤閺嬪酣鐓崶銊﹀皑闁稿鎸荤粋鎺斺偓锝庝簽閸旓箑顪冮妶鍡楀潑闁稿鎹囬弻娑㈡偐瀹曞洢鈧帗淇婇崣澶婂闁宠鍨垮畷鍫曞煘閻愵剛浜欓梺璇查缁犲秹宕曢崡鐐嶆稑鈽夐姀鐘靛姦濡炪倖甯掗ˇ顖炴倶閿旂瓔娈介柣鎰▕閸庢梹顨ラ悙鍙夊枠妞ゃ垺妫冨畷銊╊敇閻愰潧鎼稿┑鐘垫暩閸嬬娀骞撻鍡楃筏闁诡垼鐏愬ú顏勭闁绘ê鍚€缁楀姊洪幐搴g畵闁瑰嘲顑夊畷鐢稿醇濠㈩亝妫冮弫鍌滅驳鐎n亜濡奸梻浣告憸閸嬬偤骞愰幎钘夎摕闁哄洢鍨归獮銏ゆ煛閸モ晛孝濠碘€茬矙閺岋綁濮€閳轰胶浠╃紓鍌氱Т閿曨亪鐛繝鍥ㄦ櫢闁绘ǹ灏欓悿鈧俊鐐€栭幐楣冨磻閻斿摜顩烽柟鎵閳锋垿鏌涢敂璇插笌闁荤喐鍣村ú顏勎ч柛銉厛濞肩喖姊洪崘鍙夋儓闁瑰啿姘︾换姘舵⒒娴e懙褰掑嫉椤掑倻鐭欓柟鐑橆殕閸婂灚銇勯弬鍨挃缁炬儳銈搁弻锟犲礃閵娿儮鍋撶粙鎸庢瘎婵犵數濮幏鍐礋閸偆鏉归柣搴㈩問閸犳牠鎮ラ悡搴f殾婵せ鍋撳┑鈩冪摃椤︽娊鏌涢幘鏉戠仸缂佺粯绋撻埀顒佺⊕宀e潡鎯屾繝鍋芥棃鎮╅崣澶嬪枑闂佽桨绶¢崳锝夈€侀弴銏℃櫆闁芥ê顦介埀顒佺☉閳规垿鏁嶉崟顐$捕婵犫拃鍛珪缂侇喗鐟︾换婵嬪炊閵娧冨箰濠电姰鍨煎▔娑㈡晝閵堝姹查柡鍥╁枑閸欏繘鏌i悢鐓庝喊婵☆垪鍋撻梻浣芥〃缁€浣虹矓閹绢喗鍋╂繝闈涱儏缁€鍐┿亜椤撶喎鐏i柟瀵稿厴濮婄粯鎷呯粵瀣異闂佸摜濮甸幑鍥х暦濠靛﹦鐤€婵炴垼椴搁弲锝囩磽閸屾瑧鍔嶅畝锝呮健閸┿垽寮崼鐔哄幗闂佺懓顕崕鎴炵瑹濞戙垺鐓曢柡鍌氱仢閺嗭綁鏌″畝瀣瘈鐎规洘甯掗~婵嬵敇閻橀潧骞€缂傚倸鍊烽悞锕傘€冮崨姝ゅ洭鏌嗗鍛姦濡炪倖甯掗崰姘缚閹邦喚纾兼い鏃囧亹缁犲鏌ㄥ┑鍫濅槐闁轰礁鍟村畷鎺戭潩閸楃偞鎲㈤梻浣藉吹婵炩偓缂傚倹鑹鹃埢宥夋晲閸モ晝鐓嬮梺鍓茬厛閸犳捇鍩€椤掍礁绗掓い顐g箞椤㈡﹢鎮╅锝庢綌闂傚倷绶氬ḿ褍煤閵堝悿娲Ω閳轰胶鍔﹀銈嗗笒閸嬪棝寮ㄩ悧鍫㈢濠㈣泛顑囧ú瀵糕偓瑙勬磸閸ㄨ姤淇婇崼鏇炵倞闁靛ǹ鍎烘导鏇㈡煟閻斿摜鐭屽褎顨堥弫顔嘉旈崪鍐◤婵犮垼鍩栭崝鏍磻閿濆鐓曢柕澶樺灠椤╊剙鈽夐幘鐟扮毢缂佽鲸甯楀ḿ蹇涘Ω瑜忛悾濂告⒑瑜版帩妫戝┑鐐╁亾闂佽鍠楃划鎾诲箰婵犲啫绶炲璺虹灱濮婄偓绻濋悽闈涗粶妞ゆ洦鍘介幈銊︺偅閸愩劍妲梺鍝勭▉閸樺ジ宕归崒鐐寸厪濠电偟鍋撳▍鍡涙煕鐎c劌濡奸棁澶愭煥濠靛棙鍣归柡鍡欏枑娣囧﹪顢涘鍗炩叺濠殿喖锕ュ浠嬨€侀弴銏℃櫜闁糕剝鐟﹂濠氭⒒娴h櫣甯涢柟纰卞亞閹广垹鈹戠€n剙绁﹂柣搴秵閸犳牜绮婚敐鍡欑瘈濠电姴鍊搁顐︽煙閺嬵偄濮傛慨濠冩そ楠炴劖鎯旈敐鍌涱潔闂備礁鎼悧婊堝礈閻旈鏆﹂柣鐔稿閸亪鏌涢弴銊ュ季婵炴潙瀚—鍐Χ閸℃鐟愰梺缁樺釜缁犳挸顕i幎绛嬫晜闁割偆鍠撻崢閬嶆⒑閻熺増鎯堢紒澶嬫綑閻g敻宕卞☉娆戝帗閻熸粍绮撳畷婊冾潩椤掑鍍甸梺闈浥堥弲婊堝磻閸岀偞鐓ラ柣鏂挎惈瀛濋柣鐔哥懕缁犳捇鐛弽顓炵妞ゆ挾鍋熸禒顖滅磽娴f彃浜炬繝銏f硾閳洝銇愰幒鎴狀槯闂佺ǹ绻楅崑鎰枔閵堝鈷戠紓浣贯缚缁犳牠鏌i埡濠傜仩闁伙絿鍏橀弫鎾绘偐閼碱剦妲伴梻浣藉亹閳峰牓宕滃棰濇晩闁硅揪闄勯埛鎴︽偣閸ワ絺鍋撻搹顐や簴闂備礁鎲¢弻銊︻殽閹间礁鐓濋柟鎹愵嚙缁狅綁鏌i幇顓熺稇妞ゅ孩鎸搁埞鎴︽偐鐠囇冧紣闂佸摜鍣ラ崹鍫曠嵁閸℃稑纾兼慨锝庡幖缂嶅﹪骞冮埡鍛闁圭儤绻傛俊閿嬬節閻㈤潧袥闁稿鎹囬弻鐔封枔閸喗鐏撶紒楣冪畺缁犳牠寮婚悢琛″亾閻㈢櫥鐟版毄闁荤喐绮庢晶妤呮偂閿熺姴钃熸繛鎴欏灩缁犳娊鏌¢崒姘辨皑闁哄鎳庨埞鎴︽倷閸欏娅i梻浣稿簻缁茬偓绌辨繝鍥х妞ゆ棁濮ゅ▍銏ゆ⒑鐠恒劌娅愰柟鍑ゆ嫹

   闂備浇顕уù鐑藉极婵犳艾纾诲┑鐘叉搐缁愭鏌¢崶鈺佹灁闁崇懓绉撮埞鎴︽偐閸欏鎮欏┑鈽嗗亝閿曘垽寮诲☉銏犖ㄩ柕蹇婂墲閻濇牠鎮峰⿰鍐ㄧ盎闁瑰嚖鎷�  闂傚倸鍊烽懗鑸电仚缂備胶绮〃鍛村煝瀹ュ鍗抽柕蹇曞У閻庮剟姊虹紒妯哄闁稿簺鍊濆畷鏇炵暆閸曨剛鍘介梺閫涘嵆濞佳勬櫠椤斿浜滈幖鎼灡鐎氾拷  闂傚倷娴囧畷鍨叏閺夋嚚娲Χ閸ワ絽浜炬慨妯煎帶閻忥附銇勯姀锛勬噰妤犵偛顑夐弫鍐焵椤掑倻鐭嗛柛鏇ㄥ灡閻撶喐淇婇婵愬殭缂佽尪宕电槐鎾愁吋韫囨柨顏�  闂傚倸鍊烽懗鍫曞箠閹捐瑙﹂悗锝庡墮閸ㄦ繈骞栧ǎ顒€濡肩痪鎯с偢閺屾洘绻涢悙顒佺彅闂佸憡顨嗘繛濠囧蓟閳╁啫绶為悗锝庝簽閸旂ǹ鈹戦埥鍡楃伈闁瑰嚖鎷�   闂傚倸鍊峰ù鍥綖婢跺顩插ù鐘差儏缁€澶屸偓鍏夊亾闁告洦鍓欐禒閬嶆⒑闂堟丹娑㈠川椤栥倗搴婂┑鐘垫暩閸嬫稑螞濞嗘挸绀夐柡宥庡亞娑撳秵绻涢崱妯诲鞍闁绘挻娲樼换娑㈠幢濡吋鍣柣搴㈢啲閹凤拷   闂傚倸鍊风粈渚€骞夐垾鎰佹綎缂備焦蓱閸欏繘鏌熺紒銏犳灈闁活厽顨婇弻娑㈠焺閸愵亖妲堢紓鍌欒閺呯娀寮婚悢纰辨晬婵犲﹤鍠氶弳顓烆渻閵堝啫鍔甸柟鍑ゆ嫹