濠碘槅鍋撶徊楣冩偋閻樿违闁跨噦鎷�
闂備礁鎼悧蹇涘窗鎼淬劌鍨傞柨鐕傛嫹: 闁诲海鏁婚崑濠囧窗閺囩喓鈹嶅┑鐘叉搐濡﹢鏌涢妷銏℃珖鐟滃府鎷� 闂備線娼荤拹鐔煎礉鎼淬劌鍚归幖娣灮閳绘洟鏌ㄩ弬鍨挃婵炵》鎷� 闂佽崵濮嶉崘顭戜痪闂佸搫顑傞崜婵堢矙婢跺备鍋撻敐搴″箺缂佷緤鎷� 闂備胶枪椤戝啴宕曢柆宥呯畺鐎广儱顦痪褔鏌涚仦鐐殤缂佺媴鎷� 闂備胶顢婄紙浼村磿闁秴鍨傞柡鍐ㄧ墛閻掕顭跨捄铏圭伇婵$儑鎷� 闂備胶纭堕弲鐐测枍閿濆鈧線宕ㄩ弶鎴狀槺闁荤姴娲ゅΟ濠囧礉閿燂拷 濠电偞鍨堕幐璇册缚濞嗘垼濮抽柕澶嗘櫅缁€宀勬偣閸パ勨枙闁告棑鎷� 闂備浇鍋愰悺鏃堝垂娴兼惌鏁嗛柨鐕傛嫹 闂佽瀛╅崘濠氭⒔閸曨剚鍙忛柨鐕傛嫹 濠电偞鍨堕幖鈺呭储閻撳篃鐟拔旈崨顓狀槺闁荤姴娲ゅΟ濠囧礉閿燂拷 闂備礁鎲¢〃蹇涘磻閸℃稑鏋侀柟鎹愵嚙缁犳垿鏌¢崟顐g闁哥噦鎷�
濠电儑绲藉ú锔炬崲閸屾稓顩烽柨鐕傛嫹: 闂備礁鎼崐鐑藉础閸愬樊娓婚柨鐕傛嫹 闂佽崵濮村ú銈団偓姘煎灦椤㈡瑩鏁撻敓锟� 闂佽崵鍠愰悷銉ノ涘☉銏犵;闁跨噦鎷� 闂佹眹鍩勯崹閬嶆偤閺囥垺鍎婇柨鐕傛嫹 闂備焦鐪归崐鏇熸櫠閽樺娼栭柨鐕傛嫹 闂備焦鐪归崕鍗灻洪妸锔藉弿闁跨噦鎷� 闂備胶枪缁绘鐣烽悽绋挎瀬闁跨噦鎷� 闂備胶鍎甸崑鎾诲礉韫囨挾鏆ら柨鐕傛嫹 闂備胶顢婄紙浼村磹濡ゅ懎绠栭柨鐕傛嫹 闂備浇顕栭崗娆撳磿閺屻儱鐤鹃柨鐕傛嫹 闂備胶枪椤戝啴宕曢幘顔筋棅闁跨噦鎷� 缂傚倸鍊稿ú銈嗩殽閹间緡鏁婇柨鐕傛嫹 濠电偞鍨堕幐鍫曞磹閺嶎厼鐒垫い鎺戯攻鐎氾拷 闂備胶鍘у鎯般亹閸愵喖绀夐柨鐕傛嫹 闂備焦妞垮渚€骞忛敓锟� 濠电娀娼ч崑濠囧箯閿燂拷 闂備胶鍘ф惔婊堝箯閿燂拷 闂佽绻愭蹇涘箯閿燂拷 闂備焦鎮堕崕鑼矙閹达富鏁嗛柨鐕傛嫹 闂佽崵濮村ú鈺佺暦閸偅娅犻柨鐕傛嫹 闂備礁鎼ú锕€岣垮▎鎾嶅洭鏁撻敓锟�
濠电偞鍨堕幖鈺呭储閼测晙鐒婇柨鐕傛嫹: 闂佹眹鍩勯崹閬嶆偤閺囥垺鍎婇柨鐕傛嫹 闂備浇妗ㄩ悞锕傛偡閿曗偓宀e潡鏁撻敓锟� 闂備浇顕栭崜姘辨崲閸℃稑鐒垫い鎺戯攻鐎氾拷 濠电偞鍨堕幖鈺呭矗閳ь剛鈧鎼幏锟� 闂備礁鎲¢悧鐐茬暦閻㈢ǹ绠栭柨鐕傛嫹 濠电偞鍨堕幐璇册缚濞嗘垼濮抽柨鐕傛嫹 闂傚倷娴囧Λ鍕偋閹炬椿鏁侀柨鐕傛嫹 婵犳鍠楄摫闁搞劏娉涜灋闁跨噦鎷� 闂備礁鎼崐绋棵洪妶鍥e亾绾板瀚� 闂備焦鍨濋悞锕傚Φ閻愮數绀婇柨鐕傛嫹 濠德板€楁慨鎾嫉椤掑嫬钃熼柨鐕傛嫹 闂備焦鎮堕崕鎻掔暦濡警娼╅柨鐕傛嫹 濠碉紕鍋涢鍥窗閹捐鍑犻柨鐕傛嫹 闂備浇鍋愰悺鏃堝垂閾忣偅娅犻柨鐕傛嫹 闂備浇鍋愰悺鏃堝垂椤栨粎绠旈柨鐕傛嫹 闂備浇鍋愰悺鏃堝垂閹殿喚鍗氶柨鐕傛嫹 闂備礁鎼崐瑙勫垔閽樺鏆ら柨鐕傛嫹 闂備胶鎳撻崥瀣垝鎼淬劌纾奸柨鐕傛嫹 闂備礁鍚嬪Σ鎺撱仈閹间礁鍑犻柨鐕傛嫹
当前位置: 首页 > 期刊 > 《实验药学杂志》 > 2006年第3期 > 正文
编号:11340053
Lymphocytes: not useless after all
http://www.100md.com 《实验药学杂志》

     Julie.p.clayton@blueyonder.co.uk

    Half a century ago, an immunologist named N. Avrion Mitchison showed that lymphocytes—then thought to be useless—triggered tumor rejection in mice.

    Avrion Mitchison says cheers to lymphocytes (1957).

    As recently as the 1940s, immunologists thought lymphocytes served no purpose. Antibodies, on the other hand, were all the rage. But this thinking started to change when a British group began to investigate the fate of tissue transplants.

    One member of this group was Mitchison, a bright and independent-minded student whose work was inspired by his Oxford University mentor, Peter Medawar. Medawar had discovered that skin grafts given to patients with severe burns survived if derived from the patient's own body, but withered away if taken from a donor. A second graft from the same donor was rejected more quickly than the first. Medawar reproduced this phenomenon in rabbits and—as was customary at the time—believed antibodies to be responsible (1, 2).

    Cells become suspects

    Intrigued, Mitchison repeated the experiment in mice using tumor transplants instead of skin grafts, because tumors were easier to manipulate. His results were identical to Medawar's—secondary tumors were rejected more rapidly than first-time tumors—but his interpretation was different. Mitchison noticed that the transplanted mice had enlarged lymph nodes, and he recalled a similar observation by Karl Landsteiner and Melvin Chase in guinea pigs vaccinated with a bacterial antigen (3). In that study, the transfer of lymph node cells from vaccinated animals, but not antibody-containing serum, boosted the reaction of naive animals exposed to the antigen.

    Mitchison thus wondered whether cells, rather than antibodies, were responsible for the accelerated tumor rejection in his mice. To distinguish between the two possibilities, he transferred either lymph node cells or serum from mice that had already rejected a tumor. Mice that received cells rejected tumors more quickly than both untreated mice and those that received serum, suggesting that the lymph node cells were doing the work (4, 5).

    Inspired by Mitchison's finding, Medawar and colleagues Rupert Billingham and Leslie Brent found similar results in rabbits (6). Medawar had "never been that keen on antibodies," recalls Mitchison, "they were simply the only mechanism known at the time. He certainly accepted—gladly—my work".

    But questions remained about how the transferred cells acted. Did they attack the tumor directly? Or did they carry tumor antigens with them that prompted a response in the host?

    Immunology meets genetics

    The effect of the transferred cells disappeared after 10 to 20 days. Mitchison guessed that the host immune system was rejecting the foreign cells and thus switched to a new set of tools—the inbred mice of geneticists Clarence Cook Little and George Snell (Jackson Laboratory, Maine). Bred over many generations, the strains were identical for genes now known as the major histocompatibility complex. This genetic parity allowed transferred lymph node cells to survive for many weeks after transfer without rejection.

    Mitchison first confirmed that it was transferred lymphocytes, not antibodies, that led to the quicker tumor rejection in the hosts, as rejection occurred before the hosts could make their own antitumor antibodies. The effect was lost if the cells were killed by freezing before transfer, ruling out the possibility that transferred tumor antigens were the trigger. Mitchison later showed that only the lymph nodes closest to the tumors in donor mice—presumably those collecting and reacting to tumor fragments—contained the tumor-fighting cells.

    The already strong case against antibodies was further bolstered when Mitchison showed that serum antibodies, even if transferred with the lymphocytes, were unlikely to reach the tumor transplant. His results, published in three papers in the Journal of Experimental Medicine (7, 8, 9), helped bring immunology to a turning point: the recognition that lymphocytes were important.

    The importance of lymphocytes was later solidified by Jim Gowans, who showed that lymphocytes circulated between blood and tissues and therefore could patrol the body (10). Jacques Miller then demonstrated that some lymphocytes developed in the thymus and were essential for fending off infections (11). Mitchison later returned to the UK where he was the first to show convincingly that T and B cells must cooperate to trigger antibody production (12).

    References

    Medawar, P.B. 1944. J. Anat. 78:176.

    Medawar, P.B. 1945. J. Anat. 79:157.

    Landsteiner, K., and M.W. Chase. 1942. Proc. Soc. Exp. Biol. 49:688–690.

    Mitchison, N.A. 1953. Nature. 171:267–268.

    Mitchison, N.A. 1954. Proc. R. Soc. Lond. B. Biol. Sci. 142:72.

    Billingham, R.E., L. Brent, and P.B. Medawar. 1954. Proc. R. Soc. Lond. B. Biol. Sci. 143:58.

    Mitchison, N.A. 1955. J. Exp. Med. 102:157–177.

    Mitchison, N.A. 1955. J. Exp. Med. 102:179–197.

    Mitchison, N.A. 1955. J. Exp. Med. 102:199–204.

    Gowans, J.L. 1959. J. Physiol. 46:54–69.

    Miller, J.F. 1961. Lancet. 2:748–749.

    Mitchison, N.A. 2004. Nat. Rev. Immunol. 4:308–312.(Julie Clayton)
    婵犵數鍎戠徊钘壝洪悩璇茬婵犻潧娲ら閬嶆煕濞戝崬鏋ゆい鈺冨厴閺屾稑鈽夐崡鐐差潾闁哄鏅滃Λ鍐蓟濞戞ǚ鏋庨煫鍥ㄦ尨閸嬫挻绂掔€n亞鍔﹀銈嗗坊閸嬫捇鏌涢悩宕囥€掓俊鍙夊姇閳规垿宕堕埞鐐亙闁诲骸绠嶉崕鍗炍涘☉銏犵劦妞ゆ帒顦悘锔筋殽閻愬樊鍎旀鐐叉喘椤㈡棃宕ㄩ鐐靛搸婵犵數鍋犻幓顏嗗緤閹灐娲箣閻樺吀绗夐梺鎸庣箓閹峰宕甸崼婢棃鏁傜粵瀣妼闂佸摜鍋為幐鎶藉蓟閺囥垹骞㈤柡鍥╁Т婵′粙鏌i姀鈺佺仩缂傚秴锕獮濠囨晸閻樿尙鐤€濡炪倖鎸鹃崑鐔哥閹扮増鈷戦柛锔诲帎閻熸噴娲Χ閸ヮ煈娼熼梺鍐叉惈閹冲氦绻氶梻浣呵归張顒傜矙閹烘鍊垫い鏂垮⒔绾惧ジ鏌¢崘銊モ偓绋挎毄濠电姭鎷冮崟鍨杹閻庢鍠栭悥鐓庣暦濮椻偓婵℃瓕顦抽柛鎾村灦缁绘稓鈧稒岣块惌濠偽旈悩鍙夋喐闁轰緡鍣i、鏇㈡晜閽樺鈧稑鈹戦敍鍕粶濠⒀呮櫕缁瑦绻濋崶銊у幐婵犮垼娉涢敃銈夊汲閺囩喐鍙忛柣鐔煎亰濡偓闂佽桨绀佺粔鎾偩濠靛绀冩い顓熷灣閹寸兘姊绘担绛嬪殐闁哥姵鎹囧畷婵婄疀濞戣鲸鏅g紓鍌欑劍宀e潡鍩㈤弮鍫熺厽闁瑰鍎戞笟娑㈡煕閺傚灝鏆i柡宀嬬節瀹曟帒顫濋鐘靛幀缂傚倷鐒﹂〃鍛此囬柆宥呯劦妞ゆ帒鍠氬ḿ鎰磼椤旇偐绠婚柨婵堝仱閺佸啴宕掑鍗炴憢闂佽崵濞€缂傛艾鈻嶉敐鍥╃煋闁割煈鍠撻埀顒佸笒椤繈顢橀悩顐n潔闂備線娼уú銈吤洪妸鈺佺劦妞ゆ帒鍋嗛弨鐗堢箾婢跺娲寸€规洏鍨芥俊鍫曞炊閵娿儺浼曢柣鐔哥矌婢ф鏁Δ鍜冪稏濠㈣埖鍔栭崑锝夋煕閵夘垰顩☉鎾瑰皺缁辨帗娼忛妸褏鐣奸梺褰掝棑婵炩偓闁诡喗绮撻幐濠冨緞婢跺瞼姊炬繝鐢靛仜椤曨厽鎱ㄦィ鍐ㄦ槬闁哄稁鍘奸崹鍌炴煏婵炵偓娅嗛柛瀣ㄥ妼闇夐柨婵嗘噹閺嗙喐淇婇姘卞ⅵ婵﹥妞介、鏇㈡晲閸℃瑦顓婚梻浣虹帛閹碱偆鎹㈠┑瀣祦閻庯綆鍠栫粻锝嗙節婵犲倸顏柟鏋姂濮婃椽骞愭惔锝傛闂佸搫鐗滈崜鐔风暦閻熸壋鍫柛鏇ㄥ弾濞村嫬顪冮妶鍡楃瑐闁绘帪绠撳鎶筋敂閸喓鍘遍梺鐟版惈缁夋潙鐣甸崱娑欑厓鐟滄粓宕滃顒夋僵闁靛ň鏅滈崑鍌炴煥閻斿搫孝閻熸瑱绠撻獮鏍箹椤撶偟浠紓浣插亾濠㈣泛鈯曡ぐ鎺戠闁稿繗鍋愬▓銈夋⒑缂佹ḿ绠栭柣鈺婂灠閻g兘鏁撻悩鑼槰闂佽偐鈷堥崜姘额敊閹达附鈷戦悹鍥b偓铏亖闂佸憡鏌ㄦ鎼佸煝閹捐绠i柣鎰綑椤庢挸鈹戦悩璇у伐闁哥噥鍨堕獮鍡涘磼濮n厼缍婇幃鈺呭箵閹烘繂濡锋繝鐢靛Л閸嬫捇鏌熷▓鍨灓缁鹃箖绠栭弻鐔衡偓鐢登瑰暩閻熸粎澧楅悡锟犲蓟濞戙垹绠抽柡鍌氱氨閺嬪懎鈹戦悙鍙夊櫣闂佸府绲炬穱濠囧箻椤旇姤娅㈤梺璺ㄥ櫐閹凤拷

   闂佽娴烽弫濠氬磻婵犲洤绐楅柡鍥╁枔閳瑰秴鈹戦悩鍙夋悙婵☆偅锕㈤弻娑㈠Ψ閵忊剝鐝栭悷婊冨簻閹凤拷  闂傚倷鑳舵灙缂佺粯顨呴埢宥夊即閵忕姵鐎梺缁樺姉閸庛倝宕曞畝鍕厽闁逛即娼ф晶顔姐亜鎼搭垱瀚�  闂備浇宕垫慨鏉懨洪妶鍥e亾濮樼厧鐏︽い銏$懇楠炲鏁冮埀顒傜矆閸曨垱鐓熸俊顖濐嚙缁茶崵绱撳蹇斿  闂傚倷鑳堕幊鎾诲触鐎n剙鍨濋幖娣妼绾惧ジ鏌曟繛鐐珔闁告濞婇弻鈩冨緞鐎n亞鍔稿┑鈽嗗灲閹凤拷   闂傚倷娴囬~澶嬬娴犲绀夌€光偓閸曨剙浠遍梺闈浤涢崨顖ょ床婵犵數鍋涘Λ娆撳礉閺嶎偆涓嶆繛鍡樻尰閻撴洘绻涢崱妯兼噭閻庢熬鎷�   闂傚倷绀侀幉鈥愁潖缂佹ɑ鍙忛柟缁㈠枛閻鏌涢埄鍐槈缂備讲鏅犻弻鐔碱敍濠婂喚鏆銈冨劵閹凤拷