Community pulmonary rehabilitation after hospitalisation for acute exacerbations of chronic obstructive pulmonary disease: randomised contro
http://www.100md.com
《英国医生杂志》
1 Respiratory Muscle Laboratory, Guy's, King's, and St Thomas' School of Medicine, King's College Hospital, London SE5 9PJ, 2 King's College Hospital, London SE5 9RS, 3 Royal Brompton Hospital, London SW3 6NP
Correspondence to: W D-C Man william.man@kcl.ac.uk
Abstract
Admissions to hospital for acute exacerbations of chronic obstructive pulmonary disease (COPD) are a massive burden to the NHS. Over the past decade, such admissions have increased by 50%, and annual hospital costs for COPD in the United Kingdom amount to more than £587m ($1.05bn;850m).1 Exacerbations are also associated with impaired quality of life, reduced exercise capacity, and increased risk of readmission.2 Interventions designed to hasten recovery and improve symptoms after admission to hospital may lead not only to reduced use of health care in the future (and subsequent economic benefits to the NHS) but also to real improvements in quality of life and functional ability in breathless and vulnerable patients with COPD.
Pulmonary rehabilitation is a multidisciplinary programme of care for patients with chronic respiratory impairment that is individually tailored and designed to optimise each patient's physical and social performance and autonomy. Pulmonary rehabilitation leads to statistically significant and clinically meaningful improvements in health related quality of life, functional exercise capacity, and maximum exercise capacity in patients with stable COPD.3 4 Consequently, the recent guidelines on the management of COPD published by the National Institute for Clinical Excellence (NICE) and the British Thoracic Society recommend that pulmonary rehabilitation should be made available to all appropriate patients.5 However, the effects of early pulmonary rehabilitation of outpatients in the acute recovery phase after hospital admission for acute exacerbations of COPD have not previously been studied. Patients are particularly vulnerable after a hospital admission, and we assumed that early pulmonary rehabilitation of outpatients would lead to notable improvements in exercise capacity and health status, as it does in stable patients with COPD.
We assessed the feasibility and safety of an early pulmonary rehabilitation programme for outpatients and determined the effects on exercise capacity and quality of life, compared with usual care, at three months after a hospital admission for acute exacerbation of COPD.
Methods
Flow and follow up of participants
Figure 1 shows the progress of participants through the study. We initially assessed 69 patients for eligibility over a six month period. Seventeen patients were not enrolled for medical reasons or met exclusion criteria: coexisting unstable ischaemic heart disease (n = 7), pulmonary rehabilitation in preceding year (n = 4), coexisting probable or definite diagnosis of lung cancer (n = 3), chronic alcohol abuse (n = 2), and wheelchair bound owing to rheumatoid arthritis (n = 1). Ten patients refused consent: "felt too ill" (n = 4), "clash with other social activities" (n = 3), "no likely benefit to me" (n = 3). Of the 42 patients recruited, three month exercise capacity and health status data were not available for eight patients because they died (n = 3), were lost to follow up because they had moved abroad or out of area (n = 2), developed serious comorbidity unrelated to COPD (n = 2), and withdrew because of allocation to usual care (n = 1). The mean attendance rate at the pulmonary rehabilitation class was 73%, with 6 of the 18 patients attending less than 50% of the classes. No adverse events were reported in the early rehabilitation group. Table 2 shows baseline and three month data in the usual care and early pulmonary rehabilitation groups.
Table 2 Baseline and three month data. Data are mean scores (SD) and differences between groups were compared by using unpaired t tests unless otherwise indicated
Flow of participants through the study
Exercise capacity, the SGRQ impacts and total score, all four domains of the CRQ, and the mental component score of the SF-36 in favour of early pulmonary rehabilitation improved significantly. The magnitude of these mean improvements greatly exceeded the recognised minimal clinically important differences for these measures. In addition, the rehabilitation group made far fewer visits to accident and emergency departments, and we saw a trend towards reduced hospital readmission rate and fewer hospital days.
Discussion
British Lung Foundation. Lung report III—casting a shadow over the nation's health. London: British Lung Foundation, 2003.
Garcia-Aymerich J, Farrero E, Felez MA, Izquierdo J, Marrades RM, Anto JM. Risk factors of readmission to hospital for a COPD exacerbation: a prospective study. Thorax 2003;58: 100-5.
Griffiths TL, Burr ML, Campbell IA, Lewis-Jenkins V, Mullins J, Shiels K, et al. Results at 1 year of outpatient multidisciplinary pulmonary rehabilitation: a randomised controlled trial. Lancet 2000;355: 362-8.
Lacasse Y, Brosseau L, Milne S, Martin S, Wong E, Guyatt GH, et al. Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2002(3): CD003793.
National Institute for Clinical Excellence (NICE). Chronic obstructive pulmonary disease: national clinical guideline for management of chronic obstructive pulmonary disease in adults in primary and secondary care. Thorax 2004;59(suppl 1).
Singh SJ, Morgan MD, Scott S, Walters D, Hardman AE. Development of a shuttle walking test of disability in patients with chronic airways obstruction. Thorax 1992;47: 1019-24.
Jones PW, Quirk FH, Baveystock CM, Littlejohns P. A self-complete measure of health status for chronic airflow limitation. The St. George's respiratory questionnaire. Am Rev Respir Dis 1992;145: 1321-7.
Guyatt GH, Berman LB, Townsend M, Pugsley SO, Chambers LW. A measure of quality of life for clinical trials in chronic lung disease. Thorax 1987;42: 773-8.
Ware JE Jr, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 1992;30: 473-83.
Seemungal TA, Donaldson GC, Bhowmik A, Jeffries DJ, Wedzicha JA. Time course and recovery of exacerbations in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2000;161: 1608-13.
Spencer S, Jones PW. Time course of recovery of health status following an infective exacerbation of chronic bronchitis. Thorax 2003;58: 589-93.
Aaron SD, Vandemheen KL, Hebert P, Dales R, Stiell IG, Ahuja J, et al. Outpatient oral prednisone after emergency treatment of chronic obstructive pulmonary disease. N Engl J Med 2003;348: 2618-25.
Man WD, Soliman MG, Nikoletou D, Harris ML, Rafferty GF, Mustfa N, et al. Non-volitional assessment of skeletal muscle strength in patients with chronic obstructive pulmonary disease. Thorax 2003;58: 665-9.
Spruit MA, Gosselink R, Troosters T, Kasran A, Gayan-Ramirez G, Bogaerts P, et al. Muscle force during an acute exacerbation in hospitalised patients with COPD and its relationship with CXCL8 and IGF-I. Thorax 2003;58: 752-6.
Bourbeau J, Julien M, Maltais F, Rouleau M, Beaupre A, Begin R, et al. Reduction of hospital utilization in patients with chronic obstructive pulmonary disease: a disease-specific self-management intervention. Arch Intern Med 2003;163: 585-91.
Behnke M, Taube C, Kirsten D, Lehnigk B, Jorres RA, Magnussen H. Home-based exercise is capable of preserving hospital-based improvements in severe chronic obstructive pulmonary disease. Respir Med 2000;94: 1184-91.
Britton M. The burden of COPD in the U.K.: results from the confronting COPD survey. Respir Med 2003;97(suppl C): S71-9.
Griffiths TL, Phillips CJ, Davies S, Burr ML, Campbell IA. Cost effectiveness of an outpatient multidisciplinary pulmonary rehabilitation programme. Thorax 2001;56: 779-84.(William D-C Man, MRC clin)
Correspondence to: W D-C Man william.man@kcl.ac.uk
Abstract
Admissions to hospital for acute exacerbations of chronic obstructive pulmonary disease (COPD) are a massive burden to the NHS. Over the past decade, such admissions have increased by 50%, and annual hospital costs for COPD in the United Kingdom amount to more than £587m ($1.05bn;850m).1 Exacerbations are also associated with impaired quality of life, reduced exercise capacity, and increased risk of readmission.2 Interventions designed to hasten recovery and improve symptoms after admission to hospital may lead not only to reduced use of health care in the future (and subsequent economic benefits to the NHS) but also to real improvements in quality of life and functional ability in breathless and vulnerable patients with COPD.
Pulmonary rehabilitation is a multidisciplinary programme of care for patients with chronic respiratory impairment that is individually tailored and designed to optimise each patient's physical and social performance and autonomy. Pulmonary rehabilitation leads to statistically significant and clinically meaningful improvements in health related quality of life, functional exercise capacity, and maximum exercise capacity in patients with stable COPD.3 4 Consequently, the recent guidelines on the management of COPD published by the National Institute for Clinical Excellence (NICE) and the British Thoracic Society recommend that pulmonary rehabilitation should be made available to all appropriate patients.5 However, the effects of early pulmonary rehabilitation of outpatients in the acute recovery phase after hospital admission for acute exacerbations of COPD have not previously been studied. Patients are particularly vulnerable after a hospital admission, and we assumed that early pulmonary rehabilitation of outpatients would lead to notable improvements in exercise capacity and health status, as it does in stable patients with COPD.
We assessed the feasibility and safety of an early pulmonary rehabilitation programme for outpatients and determined the effects on exercise capacity and quality of life, compared with usual care, at three months after a hospital admission for acute exacerbation of COPD.
Methods
Flow and follow up of participants
Figure 1 shows the progress of participants through the study. We initially assessed 69 patients for eligibility over a six month period. Seventeen patients were not enrolled for medical reasons or met exclusion criteria: coexisting unstable ischaemic heart disease (n = 7), pulmonary rehabilitation in preceding year (n = 4), coexisting probable or definite diagnosis of lung cancer (n = 3), chronic alcohol abuse (n = 2), and wheelchair bound owing to rheumatoid arthritis (n = 1). Ten patients refused consent: "felt too ill" (n = 4), "clash with other social activities" (n = 3), "no likely benefit to me" (n = 3). Of the 42 patients recruited, three month exercise capacity and health status data were not available for eight patients because they died (n = 3), were lost to follow up because they had moved abroad or out of area (n = 2), developed serious comorbidity unrelated to COPD (n = 2), and withdrew because of allocation to usual care (n = 1). The mean attendance rate at the pulmonary rehabilitation class was 73%, with 6 of the 18 patients attending less than 50% of the classes. No adverse events were reported in the early rehabilitation group. Table 2 shows baseline and three month data in the usual care and early pulmonary rehabilitation groups.
Table 2 Baseline and three month data. Data are mean scores (SD) and differences between groups were compared by using unpaired t tests unless otherwise indicated
Flow of participants through the study
Exercise capacity, the SGRQ impacts and total score, all four domains of the CRQ, and the mental component score of the SF-36 in favour of early pulmonary rehabilitation improved significantly. The magnitude of these mean improvements greatly exceeded the recognised minimal clinically important differences for these measures. In addition, the rehabilitation group made far fewer visits to accident and emergency departments, and we saw a trend towards reduced hospital readmission rate and fewer hospital days.
Discussion
British Lung Foundation. Lung report III—casting a shadow over the nation's health. London: British Lung Foundation, 2003.
Garcia-Aymerich J, Farrero E, Felez MA, Izquierdo J, Marrades RM, Anto JM. Risk factors of readmission to hospital for a COPD exacerbation: a prospective study. Thorax 2003;58: 100-5.
Griffiths TL, Burr ML, Campbell IA, Lewis-Jenkins V, Mullins J, Shiels K, et al. Results at 1 year of outpatient multidisciplinary pulmonary rehabilitation: a randomised controlled trial. Lancet 2000;355: 362-8.
Lacasse Y, Brosseau L, Milne S, Martin S, Wong E, Guyatt GH, et al. Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2002(3): CD003793.
National Institute for Clinical Excellence (NICE). Chronic obstructive pulmonary disease: national clinical guideline for management of chronic obstructive pulmonary disease in adults in primary and secondary care. Thorax 2004;59(suppl 1).
Singh SJ, Morgan MD, Scott S, Walters D, Hardman AE. Development of a shuttle walking test of disability in patients with chronic airways obstruction. Thorax 1992;47: 1019-24.
Jones PW, Quirk FH, Baveystock CM, Littlejohns P. A self-complete measure of health status for chronic airflow limitation. The St. George's respiratory questionnaire. Am Rev Respir Dis 1992;145: 1321-7.
Guyatt GH, Berman LB, Townsend M, Pugsley SO, Chambers LW. A measure of quality of life for clinical trials in chronic lung disease. Thorax 1987;42: 773-8.
Ware JE Jr, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 1992;30: 473-83.
Seemungal TA, Donaldson GC, Bhowmik A, Jeffries DJ, Wedzicha JA. Time course and recovery of exacerbations in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2000;161: 1608-13.
Spencer S, Jones PW. Time course of recovery of health status following an infective exacerbation of chronic bronchitis. Thorax 2003;58: 589-93.
Aaron SD, Vandemheen KL, Hebert P, Dales R, Stiell IG, Ahuja J, et al. Outpatient oral prednisone after emergency treatment of chronic obstructive pulmonary disease. N Engl J Med 2003;348: 2618-25.
Man WD, Soliman MG, Nikoletou D, Harris ML, Rafferty GF, Mustfa N, et al. Non-volitional assessment of skeletal muscle strength in patients with chronic obstructive pulmonary disease. Thorax 2003;58: 665-9.
Spruit MA, Gosselink R, Troosters T, Kasran A, Gayan-Ramirez G, Bogaerts P, et al. Muscle force during an acute exacerbation in hospitalised patients with COPD and its relationship with CXCL8 and IGF-I. Thorax 2003;58: 752-6.
Bourbeau J, Julien M, Maltais F, Rouleau M, Beaupre A, Begin R, et al. Reduction of hospital utilization in patients with chronic obstructive pulmonary disease: a disease-specific self-management intervention. Arch Intern Med 2003;163: 585-91.
Behnke M, Taube C, Kirsten D, Lehnigk B, Jorres RA, Magnussen H. Home-based exercise is capable of preserving hospital-based improvements in severe chronic obstructive pulmonary disease. Respir Med 2000;94: 1184-91.
Britton M. The burden of COPD in the U.K.: results from the confronting COPD survey. Respir Med 2003;97(suppl C): S71-9.
Griffiths TL, Phillips CJ, Davies S, Burr ML, Campbell IA. Cost effectiveness of an outpatient multidisciplinary pulmonary rehabilitation programme. Thorax 2001;56: 779-84.(William D-C Man, MRC clin)