婵犵妲呴崑鎾跺緤妤e啯鍋嬮柣妯款嚙杩濋梺璺ㄥ櫐閹凤拷
闂傚倷绀侀幖顐︽偋韫囨稑绐楅幖娣妼閸ㄥ倿鏌ㄩ悤鍌涘: 闂佽娴烽弫濠氬磻婵犲洤绐楅柡鍥╁枔閳瑰秴鈹戦悩鍙夋悙婵☆偅锕㈤弻娑㈠Ψ閵忊剝鐝栭悷婊冨簻閹凤拷 闂傚倷绶氬ḿ鑽ゆ嫻閻旂厧绀夐幖娣妼閸氬綊骞栧ǎ顒€鐏柍缁樻礋閺屻劑寮崹顔规寖濠电偟銆嬮幏锟� 闂備浇宕垫慨宥夊礃椤垳鐥梻浣告惈椤戝倿宕滃┑鍫㈢煓濠㈣泛澶囬崑鎾绘晲鎼粹€崇缂備椒绶ら幏锟� 闂傚倷鑳舵灙妞ゆ垵鍟村畷鏇㈡焼瀹ュ懐鐣洪悗骞垮劚椤︻垳鐥閺屾稓浠﹂悙顒傛缂備胶濯撮幏锟� 闂傚倷鑳堕、濠勭礄娴兼潙纾块梺顒€绉撮崹鍌炴煛閸愩劎澧涢柣鎺曨嚙椤法鎹勯搹鍦紘濠碉紕鍎戦幏锟� 闂傚倷鑳剁涵鍫曞疾閻愭祴鏋嶉柨婵嗩槶閳ь兛绶氬畷銊╁级閹寸媭妲洪梺鑽ゅТ濞层倕螣婵犲洤绀夐柨鐕傛嫹 婵犵數鍋為崹鍫曞箰鐠囧唽缂氭繛鍡樺灱婵娊鏌曟径鍡樻珔缂佲偓瀹€鍕仯闁搞儜鍕ㄦ灆闂佸憡妫戦幏锟� 闂傚倷娴囬崑鎰版偤閺冨牆鍨傚ù鍏兼儗閺佸棝鏌ㄩ悤鍌涘 闂備浇顕х€涒晠宕樻繝姘挃闁告洦鍓氶崣蹇涙煥閻曞倹瀚� 婵犵數鍋為崹鍫曞箹閳哄懎鍌ㄩ柣鎾崇瘍閻熸嫈鏃堝川椤撶媭妲洪梺鑽ゅТ濞层倕螣婵犲洤绀夐柨鐕傛嫹 闂傚倷绀侀幉锟犮€冭箛娑樼;闁糕剝绋戦弸渚€鏌熼幑鎰靛殭缂佺姵鍨块弻锟犲礋椤愶絿顩伴梺鍝ュ櫐閹凤拷
婵犵數鍎戠徊钘壝洪敂鐐床闁稿本绋撻々鐑芥煥閻曞倹瀚�: 闂傚倷绀侀幖顐﹀磹閻戣棄纭€闁告劕妯婂〒濠氭煥閻曞倹瀚� 闂備浇宕垫慨鏉懨洪妶鍥e亾濮樼厧鐏︽い銏$懇閺佹捇鏁撻敓锟� 闂備浇宕甸崰鎰版偡閵夈儙娑樷槈閵忕姷锛涢梺璺ㄥ櫐閹凤拷 闂備焦鐪归崺鍕垂闁秵鍋ら柡鍥ュ灪閸庡﹪鏌ㄩ悤鍌涘 闂傚倷鐒﹂惇褰掑磹閺囩喐娅犻柦妯侯樈濞兼牠鏌ㄩ悤鍌涘 闂傚倷鐒﹂惇褰掑磿閸楃伝娲Ω閿旇棄寮块梺璺ㄥ櫐閹凤拷 闂傚倷鑳舵灙缂佺粯顨呴悾鐑芥偨缁嬫寧鐎梺璺ㄥ櫐閹凤拷 闂傚倷鑳堕崕鐢稿磻閹捐绀夐煫鍥ㄦ尵閺嗐倝鏌ㄩ悤鍌涘 闂傚倷鑳堕、濠勭礄娴兼潙纾规俊銈呮噹缁犳牠鏌ㄩ悤鍌涘 闂傚倷娴囬鏍礂濞嗘挸纾块柡灞诲劚閻ら箖鏌ㄩ悤鍌涘 闂傚倷鑳舵灙妞ゆ垵鍟村畷鏇㈠箻椤旂瓔妫呴梺璺ㄥ櫐閹凤拷 缂傚倸鍊搁崐绋棵洪妶鍡╂闁归棿绶¢弫濠囨煥閻曞倹瀚� 婵犵數鍋為崹鍫曞箰閸洖纾归柡宥庡幖閻掑灚銇勯幒鎴敾閻庢熬鎷� 闂傚倷鑳堕崢褍顕i幆鑸汗闁告劦鍠栫粈澶愭煥閻曞倹瀚� 闂傚倷鐒﹀鍨熆娓氣偓楠炲繘鏁撻敓锟� 婵犵數濞€濞佳囧磻婵犲洤绠柨鐕傛嫹 闂傚倷鑳堕崢褎鎯斿⿰鍫濈闁跨噦鎷� 闂備浇顕х换鎰殽韫囨稑绠柨鐕傛嫹 闂傚倷鐒﹂幃鍫曞磿閼碱剛鐭欓柟杈惧瘜閺佸棝鏌ㄩ悤鍌涘 闂備浇宕垫慨鏉懨洪埡浣烘殾闁割煈鍋呭▍鐘绘煥閻曞倹瀚� 闂傚倷绀侀幖顐⒚洪敃鈧玻鍨枎閹惧秴娲弫鎾绘晸閿燂拷
婵犵數鍋為崹鍫曞箹閳哄懎鍌ㄩ柤娴嬫櫃閻掑﹪鏌ㄩ悤鍌涘: 闂備焦鐪归崺鍕垂闁秵鍋ら柡鍥ュ灪閸庡﹪鏌ㄩ悤鍌涘 闂傚倷娴囧銊╂倿閿曞倹鍋¢柨鏇楀亾瀹€锝呮健閺佹捇鏁撻敓锟� 闂傚倷娴囬鏍礈濮樿鲸宕查柛鈩冪☉閻掑灚銇勯幒鎴敾閻庢熬鎷� 婵犵數鍋為崹鍫曞箹閳哄懎鐭楅柍褜鍓涢埀顒冾潐閹碱偊骞忛敓锟� 闂傚倷绀侀幉锟犳偋閻愯尙鏆﹂柣銏⑶圭粻鏍煥閻曞倹瀚� 婵犵數鍋為崹鍫曞箰鐠囧唽缂氭繛鍡樺灱婵娊鏌ㄩ悤鍌涘 闂傚倸鍊峰ù鍥涢崟顖涘亱闁圭偓妞块弫渚€鏌ㄩ悤鍌涘 濠电姵顔栭崰妤勬懌闂佹悶鍔忓▔娑滅亱闂佽法鍣﹂幏锟� 闂傚倷绀侀幖顐﹀磹缁嬫5娲Χ閸ワ絽浜剧痪鏉款槹鐎氾拷 闂傚倷鐒﹂崹婵嬫倿閿曞倸桅闁绘劗鏁哥粈濠囨煥閻曞倹瀚� 婵犲痉鏉库偓妤佹叏閹绢喖瀚夋い鎺戝閽冪喖鏌ㄩ悤鍌涘 闂傚倷鐒﹂幃鍫曞磿閹绘帞鏆︽俊顖欒濞尖晠鏌ㄩ悤鍌涘 婵犵绱曢崑娑㈩敄閸ヮ剙绐楅柟鎹愵嚙閸戠娀鏌ㄩ悤鍌涘 闂傚倷娴囬崑鎰版偤閺冨牆鍨傞柧蹇e亝濞呯娀鏌ㄩ悤鍌涘 闂傚倷娴囬崑鎰版偤閺冨牆鍨傛い鏍ㄧ矌缁犳棃鏌ㄩ悤鍌涘 闂傚倷娴囬崑鎰版偤閺冨牆鍨傞柟娈垮枤閸楁岸鏌ㄩ悤鍌涘 闂傚倷绀侀幖顐﹀磹鐟欏嫬鍨旈柦妯侯槺閺嗐倝鏌ㄩ悤鍌涘 闂傚倷鑳堕幊鎾诲触鐎n剙鍨濋幖娣妼绾惧ジ鏌ㄩ悤鍌涘 闂傚倷绀侀崥瀣i幒鎾变粓闁归棿绀侀崙鐘绘煥閻曞倹瀚�
当前位置: 首页 > 期刊 > 《国际神经病学神经外科学杂志》 > 2005年第1期 > 正文
编号:11357113
Molecular diagnosis of CNS viral infections
http://www.100md.com 《神经病学神经外科学杂志》

     1 Neurology Service, New Mexico VA Health Care System, Albuquerque, NM, USA

    2 Department of Neurology, University of Colorado Health Sciences Center, Denver, CO, USA

    Correspondence to:

    Dr L E Davis

    Neurology Service, New Mexico VA Health Care System, 1501 San Pedro Dr SE, Albuquerque, NM 87108, USA; LEDavis@unm.edu

    Diagnostic CSF PCR assays in viral CNS infections

    Keywords: Epstein Barr virus; herpes viruses; polymerase chain reaction; viral meningitis; viruses

    Identifying the agent responsible for suspected cases of viral central nervous system (CNS) infection poses tremendous diagnostic challenges, and a specific organism is identified in only 30% of cases of suspected viral encephalitis.1 Traditionally, definitive diagnosis has depended on: 1) culture of virus from cerebrospinal fluid (CSF) or brain tissue; 2) identification of viral particles, inclusions, antigen, or nucleic acid in brain tissue; or 3) demonstration of virus specific intrathecal antibody synthesis.

    The ability to amplify small amounts of viral nucleic acid from CSF using the polymerase chain reaction (PCR) technique has revolutionised the diagnosis of viral CNS infections. CSF PCR is rapid, inexpensive, and only minimally invasive. Unfortunately, validation of the sensitivity and specificity of CSF PCR by comparison to a "gold standard" such as brain biopsy, is only rarely available.2,3 False positive CSF PCR results are rare when tests are performed according to strict standards in experienced laboratories, with rigorous attention to procedures designed to avoid specimen contamination and to verify the specificity of amplification products. The sensitivity of CSF PCR varies with different viruses, and can be dramatically influenced by the timing of specimen collection in relation to onset of illness. For example, in herpes simplex virus (HSV) encephalitis false negative CSF PCR results may occur when specimens are collected either too early or too late.2,4 In the study by Davies et al (this issue, pp 82–7)5 the prevalence of positive CSF PCR results was maximal when specimens were obtained at 3–14 days (16%–19% positive) after symptom onset and significantly lower when specimens were obtained earlier (6%) or later (2%).

    Clinicians are still faced with the daunting task of ordering individual PCR tests for each virus of potential interest. Recently, "multiplex" CSF PCR assays have been developed that utilise multiple primers simultaneously in a single reaction mixture to amplify nucleic acid from a group of viruses. Davies and colleagues5 used this technology to evaluate 787 CSF samples from patients with suspected CNS infections for the presence of HSV 1 and 2, cytomegalovirus, Epstein-Barr virus (EBV), varicella-zoster virus, human herpes virus (HHV)-6, JC virus, and enteroviruses. CSF PCR was positive in 30% of patients with "likely" CNS viral infection—a result similar to other recent studies.1,6,7 The 70% of cases in which a viral agent was suspected but never discovered may be due to: 1) unknown infectious agents; 2) unusual infectious agents not covered in the tests employed; 3) known agents missed because of false negative PCRs; or 4) non-infectious CNS diseases mimicking encephalitis.1

    There were several surprising results in the study by Davies et al.5 In 9 of 88 (10%) positive first CSF samples, nucleic acid from two or more viruses—including EBV in 6 cases—was detected. Four of the five patients with dual positive CSF PCRs for whom detailed clinical information was available were human immunodeficiency virus (HIV) positive. Multiple positive CSF PCRs on the same CSF specimen is fortunately uncommon, but may occur in immunocompromised patients. CSF PCR may detect latent lymphotrophic viruses such as EBV in CSF inflammatory cells, or such latent viruses may reactivate in the CNS producing "dual" infections.8 Another unexpected result was that CSF PCR was positive in 15 of 291 (5%) patients classified as "unlikely" to have CNS viral infection. 53% of those with a positive PCR had a normal CSF cell count and 34% had both a normal cell count and protein level. The clinical significance of these PCR positive tests is currently unclear. Clinical judgment must be used both in determining when to order diagnostic CSF PCR assays and in the interpretation of the findings.

    Technical refinements of the basic PCR procedures—including use of real-time PCR and quantitative PCR—and PCR amplification to identify viral genes associated with resistance to antimicrobial chemotherapy have already entered clinical practice. An exciting research development is the availability of large scale microarrays that allow simultaneous detection of the expression of thousands of genes in single specimens. Microarrays could be used to quantify the expression of each gene in a viral genome to provide invaluable information about epidemiology, virulence determinants, and susceptibility to drugs.9,10 Chips using multi-viral gene probe sets will facilitate future pathogen discovery and may lead to discovery of viral aetiologies in both established and novel CNS diseases.

    REFERENCES

    Glaser CA, Gilliam S, Schnurr D, et al. California Encephalitis Project, 1998–2000. In search of encephalitis etiologies: diagnostic challenges in the California Encephalitis Project, 1998–2000, Clin Infect Dis 2003;36:731–42.

    Lakeman FD, Whitley RJ. Diagnosis of herpes simplex encephalitis: application of polymerase chain reaction to cerebrospinal fluid from brain-biopsied patients and correlation with disease. National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group. J Infect Dis 1995;171:857–63.

    McGuire D, Barhite S, Hollander H, et al. JC virus DNA in cerebrospinal fluid of human immunodeficiency virus-infected patients: predictive value for progressive multifocal leukoencephalopathy. Ann Neurol 1995;37:395–9.

    Weil AA, Glaser CA, Amad Z, et al. Patients with suspected herpes simplex encephalitis: rethinking an initial negative polymerase chain reaction result. Clin Infect Dis 2002;34:1154–7.

    Davies NWS, Brown LJ, Gonde J, et al. Factors influencing PCR detection of viruses in cerebrospinal fluid of patients with suspected viral infections. J Neurol Neurosurg Psychiatry 2005;76:82–7.

    Studahl M, Bergstrom T, Hagberg L. Acute viral encephalitis in adults—a prospective study. Scand J Infect Dis 1998;30:215–20.

    Koskiniemi M, Rantalaiho T, Piiparimen H, et al. Infections of the central nervous system of suspected viral origin: a collaborative study from Finland. J Neurovirol 2001;7:400–8.

    Weinberg A, Bloch KC, Li S, et al. Dual infections of the central nervous system with Epstein-Barr virus. J Infect Dis 2004; in press.

    Kato-Maeda M, Gao Q, Small PM. Microarray analysis of pathogens and their interaction with hosts. Cell Microbiol 2001;3:713–9.

    Striebel HM, Birch-Hirschfeld E, Egerer R, et al. Virus diagnostics on microarrays. Curr Pharmaceut Biotechnol 2003;4:401–15.(L E Davis1 and K L Tyler2)
    濠电儑绲藉ú鐘诲礈濠靛洤顕遍柛娑卞枤椤╃兘鏌涘☉鍗炲閺夆晜妫冮弻娑樷枎韫囨挴鍋撴禒瀣劦妞ゆ巻鍋撻柛鐘崇〒濡叉劕鈹戦崶鈹炬灃閻庡箍鍎卞Λ娑㈠焵椤掑鐏︽鐐差儔楠炲洭顢旈崨顓炵哎濠电偠鎻徊鎯洪幋鐘典笉闁挎繂鎷嬮崵鍫澪旈敂绛嬪劌闁哥偞鎸抽弻鏇㈠幢閺囩姴濡介柣銏╁灠缂嶅﹪骞婇敓鐘茬疀妞ゆ挾鍋熸禒鎰版⒑閸︻厐鐟懊洪妶鍥潟闁冲搫鎳庤繚闂佺ǹ鏈粙鎺楁倵椤斿墽纾奸柡鍐ㄥ€稿暩婵犫拃鍕垫疁鐎殿喖鐖煎畷姗€濡歌閸撴垶绻涚€涙ḿ鐭婂Δ鐘叉憸閺侇噣顢曢敂钘夘€涘┑锛勫仜婢х晫绮欐繝鍥ㄧ厸濠㈣泛锕ら弳鏇熸叏閻熼偊妯€闁轰礁绉撮悾婵嬪礃椤垳鎴烽梻浣筋嚃閸犳捇宕濊箛娑辨晣缂備焦岣块埢鏃堟煟閹寸儑渚涢柛鏂垮暣閺岋繝宕掑顓犵厬缂備焦顨呴ˇ閬嶅焵椤掑喚娼愮紒顔肩箻閿濈偤鏁冮崒姘卞摋闁荤娀缂氬▍锝囩矓閸喓鈧帒顫濋鐘闂侀潧娲ゅú銊╁焵椤掑偆鏀版繛澶嬬洴瀹曘垽濡堕崶銊ヮ伕閻熸粎澧楃敮妤咃綖婢舵劖鍋i柛銉娑撹尙绱掓潏銊х畼闁归濞€閹粓鎸婃径澶岀梾濠电偛顕慨楣冨春閺嶎厼鍨傞柕濞炬櫆閸嬨劌霉閿濆懎鏆熸俊顖氱墦濮婃椽顢曢敐鍡欐闂佺粯鎼换婵嬬嵁鐎n喖绠f繝濠傚閹枫劑姊洪幐搴b槈闁哄牜鍓熷畷鐟扳堪閸曨収娴勫銈嗗笂閻掞箓寮抽鍫熺厱闁瑰搫绉村畵鍡涙煃瑜滈崜姘潩閵娾晜鍋傞柨鐔哄Т鐟欙箓骞栭幖顓炵仯缂佲偓婢跺⊕褰掑礂閸忚偐娈ら梺缁樼箖閻╊垰鐣烽敓鐘茬闁肩⒈鍓氶鎴︽⒑鐠団€虫灁闁告柨楠搁埢鎾诲箣閻愭潙顎撳┑鐘诧工閸燁垶骞嗛崒姣綊鎮╅幓鎺濆妷濠电姭鍋撻柟娈垮枤绾鹃箖鏌熺€电ǹ啸鐟滅増鐓¢弻娑㈠箳閺傚簱鏋呭┑鐐叉噹闁帮絾淇婇幘顔芥櫢闁跨噦鎷�

   闁诲海鏁婚崑濠囧窗閺囩喓鈹嶅┑鐘叉搐濡﹢鏌涢妷銏℃珖鐟滃府鎷�  闂備胶枪缁绘鈻嶉弴銏犳瀬闁绘劗鍎ら崕宀勬煟閹伴潧澧い搴嫹  闂佽崵濮村ú銈団偓姘煎灦椤㈡瑩骞嬮敃鈧粈鍕煟濡绲荤紓宥忔嫹  闂備胶鎳撻崥瀣垝鎼淬劌纾奸柕濞炬櫅閸楁娊鏌℃径瀣劸婵☆垽鎷�   闂備浇顫夋禍浠嬪礉瀹€鍕仱闁靛ě鍛紲濠电偛妫欓崝鏍不濞嗘挻鐓曟繛鍡樼懄鐎氾拷   闂備礁鎲″缁樻叏閹绢喖鐭楅柛鈩冪☉缂佲晠鏌熼婊冾暭妞ゃ儻鎷�