《机器学习》.azw3 .epub .mobi .pdf .txt
基本信息:
-
书名: 机器学习
作者: 周志华
出版社/出版时间: 清华大学出版社2015-12-31
国际标准书号: 978-7-302-42328-7
电子版包括 .azw3 .epub .mobi .pdf .txt等格式:
《机器学习》(周志华2016年版).azw3 文件 17009 KB,
《机器学习》(周志华2016年版).epub 文件 14984 KB,
《机器学习》(周志华2016年版).mobi 文件 16818 KB,
《机器学习》(周志华2016年版).pdf 文件 21421 KB,
《机器学习》(周志华2016年版).txt 文件 738 KB。
pdf部分截图:
![]() |
| 第1页 |
![]() |
| 第2页 |
![]() |
| 第3页 |
![]() |
| 第704页 |
![]() |
| 第111页 |
![]() |
| 第15页 |
![]() |
| 第29页 |
![]() |
| 第30页 |
![]() |
| 第335页 |
![]() |
| 第249页 |
![]() |
| 第450页 |
![]() |
| 第565页 |
![]() |
| 第65页 |
![]() |
| 第379页 |
![]() |
| 第80页 |
![]() |
| 第196页 |
目录简介:
- 版权信息
序言
前言
如何使用本书 ——写在第十次印刷之际
主要符号表
第1章 绪论
1.1 引言
1.2 基本术语
1.3 假设空间
1.4 归纳偏好
1.5 发展历程
1.6 应用现状
1.7 阅读材料
习题
参考文献
休息一会儿
第2章 模型评估与选择
2.1 经验误差与过拟合
2.2 评估方法
2.3 性能度量
2.4 比较检验
2.5 偏差与方差
2.6 阅读材料
习题
参考文献
休息一会儿
第3章 线性模型
3.1 基本形式
3.2 线性回归
3.3 对数几率回归
3.4 线性判别分析
3.5 多分类学习
3.6 类别不平衡问题
3.7 阅读材料
习题
参考文献
休息一会儿
第4章 决策树
4.1 基本流程
4.2 划分选择
4.3 剪枝处理
4.4 连续与缺失值
4.5 多变量决策树
4.6 阅读材料
习题
参考文献
休息一会儿
第5章 神经网络
5.1 神经元模型
5.2 感知机与多层网络
5.3 误差逆传播算法
5.4 全局最小与局部极小
5.5 其他常见神经网络
5.6 深度学习
5.7 阅读材料
习题
参考文献
休息一会儿
第6章 支持向量机
6.1 间隔与支持向量
6.2 对偶问题
6.3 核函数
6.4 软间隔与正则化
6.5 支持向量回归
6.6 核方法
6.7 阅读材料
习题
参考文献
休息一会儿
第7章 贝叶斯分类器
7.1 贝叶斯决策论
7.2 极大似然估计
7.3 朴素贝叶斯分类器
7.4 半朴素贝叶斯分类器
7.5 贝叶斯网
7.6 EM算法
7.7 阅读材料
习题
参考文献
休息一会儿
第8章 集成学习
8.1 个体与集成
8.2 Boosting
8.3 Bagging与随机森林
8.4 结合策略
8.5 多样性
8.6 阅读材料
习题
参考文献
休息一会儿
第9章 聚类
9.1 聚类任务
9.2 性能度量
9.3 距离计算
9.4 原型聚类
9.5 密度聚类
9.6 层次聚类
9.7 阅读材料
习题
参考文献
休息一会儿
第10章 降维与度量学习
10.1 k近邻学习
10.2 低维嵌入
10.3 主成分分析
10.4 归纳偏好
10.5 流形学习
10.6 度量学习
10.7 阅读材料
习题
参考文献
休息一会儿
第11章 特征选择与稀疏学习
11.1 子集搜索与评价
11.2 过滤式选择
11.3 包裹式选择
11.4 嵌入式选择与L1正则化
11.5 稀疏表示与字典学习
11.6 压缩感知
11.7 阅读材料
习题
参考文献
休息一会儿
第12章 计算学习理论
12.1 基础知识
12.2 PAC学习
12.3 有限假设空间
12.4 VC维
12.5 Rademacher复杂度
12.6 稳定性
12.7 阅读材料
习题
参考文献
休息一会儿
第13章 半监督学习
13.1 未标记样本
13.2 生成式方法
13.3 半监督SVM
13.4 图半监督学习
13.5 基于分歧的方法
13.6 半监督聚类
13.7 阅读材料
习题
参考文献
休息一会儿
第14章 概率图模型
14.1 隐马尔可夫模型
14.2 马尔可夫随机场
14.3 条件随机场
14.4 学习与推断
14.5 近似推断
14.6 话题模型
14.7 阅读材料
习题
参考文献
休息一会儿
第15章 规则学习
15.1 基本概念
15.2 序贯覆盖
15.3 剪枝优化
15.4 一阶规则学习
15.5 归纳逻辑程序设计
15.6 阅读材料
习题
参考文献
休息一会儿
第16章 强化学习
16.1 任务与奖赏
16.2 K-摇臂赌博机
16.3 有模型学习
16.4 免模型学习
16.5 值函数近似
16.6 模仿学习
16.7 阅读材料
习题
参考文献
休息一会儿
附录
A 矩阵
B 优化
C 概率分布
后记
附件资料:
- 《软件体的生命周期》(特德·姜科幻小说集).azw3(645KB)
- 《生命3.0:人工智能时代,人类的进化与重生》.azw3(18117KB)
- 《机器学习》(周志华2016年版).azw3(17009KB)
- 《机器学习》(周志华2016年版).epub(14984KB)
- 《生命3.0:人工智能时代,人类的进化与重生》.epub(16288KB)
- 《软件体的生命周期》(特德·姜科幻小说集).epub(428KB)
- 《软件体的生命周期》(特德·姜科幻小说集).mobi(633KB)
- 《生命3.0:人工智能时代,人类的进化与重生》.mobi(18071KB)
- 《机器学习》(周志华2016年版).mobi(16818KB)
- 《机器学习》(周志华2016年版).pdf(21421KB)
- 《生命3.0:人工智能时代,人类的进化与重生》.pdf(22239KB)
- 《软件体的生命周期》(特德·姜科幻小说集).pdf(2936KB)
- 《软件体的生命周期》(特德·姜科幻小说集).txt(366KB)
- 《生命3.0:人工智能时代,人类的进化与重生》.txt(750KB)
- 《机器学习》(周志华2016年版).txt(738KB)
相关资料1:
- 《游戏:让学习成瘾》卡普 Kapp.pdf
- 《钱歌川英语学习大全:教育泰斗毕生英语教学总结》.epub
- 《量子力学(全美经典学习指导系列)》.(美)皮莱格&普尼尼&扎阿鲁尔.扫描版.pdf
- 《袁腾飞讲高效学习法》.epub
- 《杠杆式学习》.pdf
- 每日 学习计划表.doc
- 《学会如何学习》芭芭拉·奥克利.epub
- 《机器学习入门到实战:MATLAB 实践应用》.pdf
- 《刘绍武三部六病传讲录》学习心得(完整篇).pdf
- 神经网络与机器学习(加)Simon Haykin.pdf
- 机器学习及其应用2019.pdf
- 0147. 《人生精进三部曲:深度思考+终身学习+内在成长》(套装共3册)【思考—学习—成长,人生精进的最佳曲线】.pdf
- 《如何激发孩子的学习兴趣》扫描版.pdf
- 欧姆社学习漫画-生物·漫画分子生物学-[日]武村政春-伍会健(译)-科学出版社-2010.pdf
- 深度学习--用 PYTHON 开发你的智能应用.pdf
相关资料2:
- 《算法图解》 (图灵程序设计丛书).pdf
- 《灰猫奇异事务所》.pdf .epub .mobi .azw3
- 《网络是怎样连接的》.pdf
- 《足利女童连续失踪事件》.pdf .epub .mobi .azw3
- 《巴黎烧了吗?》(董乐山2013年版).pdf .epub .mobi .azw3
- 《非洲三万里》.pdf .epub .mobi .azw3
- 《C++ Primer Plus》(第6版)中文版.pdf
- 《Redis设计与实现》 (数据库技术丛书) - 黄健宏 著.pdf
- 《在西伯利亚森林中》(周佩琼2015年版).pdf .epub .mobi .azw3
- 《素食者》(胡椒筒2021年版).pdf .epub .mobi .azw3
- 《俞军产品方法论》.pdf .epub .mobi .azw3
- 《那个不为人知的故事》 - Twentine.pdf .epub .mobi .azw3
- 《JavaScript高级程序设计》(第3版) (图灵程序设计丛书) - 泽卡斯(Zakas. Nicholas C.).pdf
- 《红楼梦》(中国古典文学名著典藏) (古典名著普及文库) - 曹雪芹.pdf
- 《白色橄榄树》 - 玖月晞.pdf .epub .mobi .azw3
/《机器学习》(周志华2016年版)_1.jpg)
/《机器学习》(周志华2016年版)_2.jpg)
/《机器学习》(周志华2016年版)_3.jpg)
/《机器学习》(周志华2016年版)_704.jpg)
/《机器学习》(周志华2016年版)_111.jpg)
/《机器学习》(周志华2016年版)_15.jpg)
/《机器学习》(周志华2016年版)_29.jpg)
/《机器学习》(周志华2016年版)_30.jpg)
/《机器学习》(周志华2016年版)_335.jpg)
/《机器学习》(周志华2016年版)_249.jpg)
/《机器学习》(周志华2016年版)_450.jpg)
/《机器学习》(周志华2016年版)_565.jpg)
/《机器学习》(周志华2016年版)_65.jpg)
/《机器学习》(周志华2016年版)_379.jpg)
/《机器学习》(周志华2016年版)_80.jpg)
/《机器学习》(周志华2016年版)_196.jpg)